Какие продукты могут быть получены при окислении метана


Каталитическое окисление метана

1

H

1,008

1s1

2,1

Бесцветный газ

пл=-259°C

кип=-253°C

2

He

4,0026

1s2

4,5

Бесцветный газ

кип=-269°C

3

Li

6,941

2s1

0,99

Мягкий серебристо-белый металл

пл=180°C

кип=1317°C

4

Be

9,0122

2s2

1,57

Светло-серый металл

пл=1278°C

кип=2970°C

5

B

10,811

2s2 2p1

2,04

Темно-коричневое аморфное вещество

пл=2300°C

кип=2550°C

6

C

12,011

2s2 2p2

2,55

Прозрачный (алмаз) / черный (графит) минерал

пл=3550°C

кип=4830°C

7

N

14,007

2s2 2p3

3,04

Бесцветный газ

пл=-210°C

кип=-196°C

8

O

15,999

2s2 2p4

3,44

Бесцветный газ

пл=-218°C

кип=-183°C

9

F

18,998

2s2 2p5

3,98

Бледно-желтый газ

пл=-220°C

кип=-188°C

10

Ne

20,180

2s2 2p6

4,4

Бесцветный газ

пл=-249°C

кип=-246°C

11

Na

22,990

3s1

0,98

Мягкий серебристо-белый металл

пл=98°C

кип=892°C

12

Mg

24,305

3s2

1,31

Серебристо-белый металл

пл=649°C

кип=1107°C

13

Al

26,982

3s2 3p1

1,61

Серебристо-белый металл

пл=660°C

кип=2467°C

14

Si

28,086

3s2 3p2

1,9

Коричневый порошок / минерал

пл=1410°C

кип=2355°C

15

P

30,974

3s2 3p3

2,2

Белый минерал / красный порошок

пл=44°C

кип=280°C

16

S

32,065

3s2 3p4

2,58

Светло-желтый порошок

пл=113°C

кип=445°C

17

Cl

35,453

3s2 3p5

3,16

Желтовато-зеленый газ

пл=-101°C

кип=-35°C

18

Ar

39,948

3s2 3p6

4,3

Бесцветный газ

пл=-189°C

кип=-186°C

19

K

39,098

4s1

0,82

Мягкий серебристо-белый металл

пл=64°C

кип=774°C

20

Ca

40,078

4s2

1,0

Серебристо-белый металл

пл=839°C

кип=1487°C

21

Sc

44,956

3d1 4s2

1,36

Серебристый металл с желтым отливом

пл=1539°C

кип=2832°C

22

Ti

47,867

3d2 4s2

1,54

Серебристо-белый металл

пл=1660°C

кип=3260°C

23

V

50,942

3d3 4s2

1,63

Серебристо-белый металл

пл=1890°C

кип=3380°C

24

Cr

51,996

3d5 4s1

1,66

Голубовато-белый металл

пл=1857°C

кип=2482°C

25

Mn

54,938

3d5 4s2

1,55

Хрупкий серебристо-белый металл

пл=1244°C

кип=2097°C

26

Fe

55,845

3d6 4s2

1,83

Серебристо-белый металл

пл=1535°C

кип=2750°C

27

Co

58,933

3d7 4s2

1,88

Серебристо-белый металл

пл=1495°C

кип=2870°C

28

Ni

58,693

3d8 4s2

1,91

Серебристо-белый металл

пл=1453°C

кип=2732°C

29

Cu

63,546

3d10 4s1

1,9

Золотисто-розовый металл

пл=1084°C

кип=2595°C

30

Zn

65,409

3d10 4s2

1,65

Голубовато-белый металл

пл=420°C

кип=907°C

31

Ga

69,723

4s2 4p1

1,81

Белый металл с голубоватым оттенком

пл=30°C

кип=2403°C

32

Ge

72,64

4s2 4p2

2,0

Светло-серый полуметалл

пл=937°C

кип=2830°C

33

As

74,922

4s2 4p3

2,18

Зеленоватый полуметалл

субл=613°C

(сублимация)

34

Se

78,96

4s2 4p4

2,55

Хрупкий черный минерал

пл=217°C

кип=685°C

35

Br

79,904

4s2 4p5

2,96

Красно-бурая едкая жидкость

пл=-7°C

кип=59°C

36

Kr

83,798

4s2 4p6

3,0

Бесцветный газ

пл=-157°C

кип=-152°C

37

Rb

85,468

5s1

0,82

Серебристо-белый металл

пл=39°C

кип=688°C

38

Sr

87,62

5s2

0,95

Серебристо-белый металл

пл=769°C

кип=1384°C

39

Y

88,906

4d1 5s2

1,22

Серебристо-белый металл

пл=1523°C

кип=3337°C

40

Zr

91,224

4d2 5s2

1,33

Серебристо-белый металл

пл=1852°C

кип=4377°C

41

Nb

92,906

4d4 5s1

1,6

Блестящий серебристый металл

пл=2468°C

кип=4927°C

42

Mo

95,94

4d5 5s1

2,16

Блестящий серебристый металл

пл=2617°C

кип=5560°C

43

Tc

98,906

4d6 5s1

1,9

Синтетический радиоактивный металл

пл=2172°C

кип=5030°C

44

Ru

101,07

4d7 5s1

2,2

Серебристо-белый металл

пл=2310°C

кип=3900°C

45

Rh

102,91

4d8 5s1

2,28

Серебристо-белый металл

пл=1966°C

кип=3727°C

46

Pd

106,42

4d10

2,2

Мягкий серебристо-белый металл

пл=1552°C

кип=3140°C

47

Ag

107,87

4d10 5s1

1,93

Серебристо-белый металл

пл=962°C

кип=2212°C

48

Cd

112,41

4d10 5s2

1,69

Серебристо-серый металл

пл=321°C

кип=765°C

49

In

114,82

5s2 5p1

1,78

Мягкий серебристо-белый металл

пл=156°C

кип=2080°C

50

Sn

118,71

5s2 5p2

1,96

Мягкий серебристо-белый металл

пл=232°C

кип=2270°C

51

Sb

121,76

5s2 5p3

2,05

Серебристо-белый полуметалл

пл=631°C

кип=1750°C

52

Te

127,60

5s2 5p4

2,1

Серебристый блестящий полуметалл

пл=450°C

кип=990°C

53

I

126,90

5s2 5p5

2,66

Черно-серые кристаллы

пл=114°C

кип=184°C

54

Xe

131,29

5s2 5p6

2,6

Бесцветный газ

пл=-112°C

кип=-107°C

55

Cs

132,91

6s1

0,79

Мягкий серебристо-желтый металл

пл=28°C

кип=690°C

56

Ba

137,33

6s2

0,89

Серебристо-белый металл

пл=725°C

кип=1640°C

57

La

138,91

5d1 6s2

1,1

Серебристый металл

пл=920°C

кип=3454°C

58

Ce

140,12

f-элемент

Серебристый металл

пл=798°C

кип=3257°C

59

Pr

140,91

f-элемент

Серебристый металл

пл=931°C

кип=3212°C

60

Nd

144,24

f-элемент

Серебристый металл

пл=1010°C

кип=3127°C

61

Pm

146,92

f-элемент

Светло-серый радиоактивный металл

пл=1080°C

кип=2730°C

62

Sm

150,36

f-элемент

Серебристый металл

пл=1072°C

кип=1778°C

63

Eu

151,96

f-элемент

Серебристый металл

пл=822°C

кип=1597°C

64

Gd

157,25

f-элемент

Серебристый металл

пл=1311°C

кип=3233°C

65

Tb

158,93

f-элемент

Серебристый металл

пл=1360°C

кип=3041°C

66

Dy

162,50

f-элемент

Серебристый металл

пл=1409°C

кип=2335°C

67

Ho

164,93

f-элемент

Серебристый металл

пл=1470°C

кип=2720°C

68

Er

167,26

f-элемент

Серебристый металл

пл=1522°C

кип=2510°C

69

Tm

168,93

f-элемент

Серебристый металл

пл=1545°C

кип=1727°C

70

Yb

173,04

f-элемент

Серебристый металл

пл=824°C

кип=1193°C

71

Lu

174,96

f-элемент

Серебристый металл

пл=1656°C

кип=3315°C

72

Hf

178,49

5d2 6s2

Серебристый металл

пл=2150°C

кип=5400°C

73

Ta

180,95

5d3 6s2

Серый металл

пл=2996°C

кип=5425°C

74

W

183,84

5d4 6s2

2,36

Серый металл

пл=3407°C

кип=5927°C

75

Re

186,21

5d5 6s2

Серебристо-белый металл

пл=3180°C

кип=5873°C

76

Os

190,23

5d6 6s2

Серебристый металл с голубоватым оттенком

пл=3045°C

кип=5027°C

77

Ir

192,22

5d7 6s2

Серебристый металл

пл=2410°C

кип=4130°C

78

Pt

195,08

5d9 6s1

2,28

Мягкий серебристо-белый металл

пл=1772°C

кип=3827°C

79

Au

196,97

5d10 6s1

2,54

Мягкий блестящий желтый металл

пл=1064°C

кип=2940°C

80

Hg

200,59

5d10 6s2

2,0

Жидкий серебристо-белый металл

пл=-39°C

кип=357°C

81

Tl

204,38

6s2 6p1

Серебристый металл

пл=304°C

кип=1457°C

82

Pb

207,2

6s2 6p2

2,33

Серый металл с синеватым оттенком

пл=328°C

кип=1740°C

83

Bi

208,98

6s2 6p3

Блестящий серебристый металл

пл=271°C

кип=1560°C

84

Po

208,98

6s2 6p4

Мягкий серебристо-белый металл

пл=254°C

кип=962°C

85

At

209,98

6s2 6p5

2,2

Нестабильный элемент, отсутствует в природе

пл=302°C

кип=337°C

86

Rn

222,02

6s2 6p6

2,2

Радиоактивный газ

пл=-71°C

кип=-62°C

87

Fr

223,02

7s1

0,7

Нестабильный элемент, отсутствует в природе

пл=27°C

кип=677°C

88

Ra

226,03

7s2

0,9

Серебристо-белый радиоактивный металл

пл=700°C

кип=1140°C

89

Ac

227,03

6d1 7s2

1,1

Серебристо-белый радиоактивный металл

пл=1047°C

кип=3197°C

90

Th

232,04

f-элемент

Серый мягкий металл

91

Pa

231,04

f-элемент

Серебристо-белый радиоактивный металл

92

U

238,03

f-элемент

1,38

Серебристо-белый металл

пл=1132°C

кип=3818°C

93

Np

237,05

f-элемент

Серебристо-белый радиоактивный металл

94

Pu

244,06

f-элемент

Серебристо-белый радиоактивный металл

95

Am

243,06

f-элемент

Серебристо-белый радиоактивный металл

96

Cm

247,07

f-элемент

Серебристо-белый радиоактивный металл

97

Bk

247,07

f-элемент

Серебристо-белый радиоактивный металл

98

Cf

251,08

f-элемент

Нестабильный элемент, отсутствует в природе

99

Es

252,08

f-элемент

Нестабильный элемент, отсутствует в природе

100

Fm

257,10

f-элемент

Нестабильный элемент, отсутствует в природе

101

Md

258,10

f-элемент

Нестабильный элемент, отсутствует в природе

102

No

259,10

f-элемент

Нестабильный элемент, отсутствует в природе

103

Lr

266

f-элемент

Нестабильный элемент, отсутствует в природе

104

Rf

267

6d2 7s2

Нестабильный элемент, отсутствует в природе

105

Db

268

6d3 7s2

Нестабильный элемент, отсутствует в природе

106

Sg

269

6d4 7s2

Нестабильный элемент, отсутствует в природе

107

Bh

270

6d5 7s2

Нестабильный элемент, отсутствует в природе

108

Hs

277

6d6 7s2

Нестабильный элемент, отсутствует в природе

109

Mt

278

6d7 7s2

Нестабильный элемент, отсутствует в природе

110

Ds

281

6d9 7s1

Нестабильный элемент, отсутствует в природе

Металлы

Неметаллы

Щелочные

Щелоч-зем

Благородные

Галогены

Халькогены

Полуметаллы

s-элементы

p-элементы

d-элементы

f-элементы

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

метана | Определение, свойства, использование и факты

Метан , бесцветный газ без запаха, который часто встречается в природе и является продуктом определенной деятельности человека. Метан - простейший член парафинового ряда углеводородов и один из самых сильных парниковых газов. Его химическая формула - CH 4 .

метановый цикл Encyclopdia Britannica, Inc.

Британская викторина

Ветер и воздух: факт или вымысел?

Пассаты дуют с севера на юг.

Химические свойства метана

Метан легче воздуха, его удельный вес составляет 0,554. Он слабо растворяется в воде. Легко горит на воздухе, образуя углекислый газ и водяной пар; пламя бледное, слегка яркое и очень горячее. Точка кипения метана составляет -162 ° C (-259,6 ° F), а точка плавления -182,5 ° C (-296,5 ° F). Метан в целом очень стабилен, но смеси метана и воздуха с содержанием метана от 5 до 14 процентов по объему взрывоопасны.Взрывы таких смесей часто случаются на угольных шахтах и ​​угольных шахтах и ​​являются причиной многих аварий на шахтах.

структура метана

Тетраэдрическая структура метана (CH 4 ) объясняется в теории VSEPR (валентная оболочка-электронная пара отталкивания) молекулярной формы, предполагая, что четыре пары связывающих электронов (представленные серые облака) занимают позиции, минимизирующие их взаимное отталкивание.

Encyclopædia Britannica, Inc.

Источники метана

В природе метан образуется в результате анаэробного бактериального разложения растительных веществ под водой (где его иногда называют болотным газом или болотным газом). Водно-болотные угодья являются основным естественным источником производимого таким образом метана. Другие важные природные источники метана включают термитов (в результате процессов пищеварения), вулканы, жерла на дне океана и отложения гидрата метана, которые встречаются вдоль окраин континентов и под антарктическими льдами и арктической вечной мерзлотой.Метан также является основным компонентом природного газа, который содержит от 50 до 90 процентов метана (в зависимости от источника) и встречается как компонент горючего газа (горючего газа) вдоль угольных пластов.

химическая структура метана

Тетраэдрическая геометрия метана: (A) модель стержня и шарика и (B) диаграмма, показывающая валентные углы и расстояния. (Простые связи обозначают связи в плоскости изображения; клин и пунктирные связи обозначают связи, направленные к зрителю и от него, соответственно.)

Encyclopædia Britannica, Inc.

Производство и сжигание природного газа и угля являются основными антропогенными (связанными с деятельностью человека) источниками метана. Такие виды деятельности, как добыча и обработка природного газа и деструктивная перегонка битуминозного угля при производстве угольного и коксового газа, приводят к выбросу значительных количеств метана в атмосферу. Другая деятельность человека, связанная с производством метана, включает сжигание биомассы, животноводство и управление отходами (где бактерии производят метан, разлагая отстой в очистных сооружениях и разлагающийся материал на свалках).

Получите эксклюзивный доступ к контенту из нашего первого издания 1768 с вашей подпиской. Подпишитесь сегодня

Использование метана

Метан - важный источник водорода и некоторых органических химикатов. Метан реагирует с паром при высоких температурах с образованием окиси углерода и водорода; последний используется при производстве аммиака для удобрений и взрывчатых веществ. Другие ценные химические вещества, полученные из метана, включают метанол, хлороформ, четыреххлористый углерод и нитрометан. При неполном сгорании метана образуется технический углерод, который широко используется в качестве армирующего агента в резине, используемой для автомобильных шин.

Роль как парниковый газ

Метан, который производится и выбрасывается в атмосферу, поглощается стоками метана, которые включают почву и процесс окисления метана в тропосфере (нижний уровень атмосферы). Большая часть метана, производимого естественным путем, компенсируется его поглощением в естественных стоках. Однако антропогенное производство метана может вызвать более быстрое увеличение концентраций метана, чем они компенсируются поглотителями. С 2007 года концентрация метана в атмосфере Земли увеличилась в 6 раз.8–10 частей на миллиард (ppb) в год. К 2020 году содержание метана в атмосфере достигло 1873,5 частей на миллиард, что примерно в два-три раза выше, чем доиндустриальные уровни, которые колебались на уровне 600-700 частей на миллиард.

Повышенная концентрация метана в атмосфере способствует парниковому эффекту, в результате чего парниковые газы (особенно углекислый газ, метан и водяной пар) поглощают инфракрасное излучение (чистую тепловую энергию) и повторно излучают его обратно на поверхность Земли, потенциально задерживая тепло и производя существенные изменения климата.Повышенное содержание метана в атмосфере также косвенно увеличивает парниковый эффект. Например, при окислении метана гидроксильные радикалы (OH -) удаляют метан, вступая в реакцию с ним с образованием диоксида углерода и водяного пара, а по мере увеличения концентрации атмосферного метана концентрация гидроксильных радикалов уменьшается, что эффективно продлевает срок службы метана в атмосфере. .

The Editors of Encyclopaedia Britannica Эта статья была недавно отредактирована и обновлена ​​редактором Джоном П. Рафферти.

Узнайте больше в этих связанных статьях Britannica:

  • глобальное потепление: метан

    Метан (CH 4 ) - второй по значимости парниковый газ. CH 4 более мощный, чем CO 2 , потому что радиационное воздействие, производимое на одну молекулу, больше.Кроме того, инфракрасное окно менее насыщено в диапазоне длин волн излучения, поглощаемого CH 4 , поэтому больше…

  • парниковый газ: метан

    Метан (CH 4 ) - второй по значимости парниковый газ.CH 4 более мощный, чем CO 2 , потому что радиационное воздействие, производимое на одну молекулу, больше. Кроме того, инфракрасное окно менее насыщено в диапазоне длин волн излучения, поглощаемого CH 4 , поэтому больше…

  • Климат: Климат и жизнь

    … пар, двуокись углерода, окись углерода, метан, озон, двуокись азота, азотная кислота, аммиак и ионы аммония, закись азота, двуокись серы, сероводород, карбонилсульфид, диметилсульфид и сложный набор неметановых углеводородов.Из них…

.

Simple English Wikipedia, бесплатная энциклопедия

[4]
Methane
Имена
Предпочтительное название IUPAC
Систематическое название ИЮПАК Карбон (никогда не рекомендуется [1] )
Прочие наименования
  • Болотный газ
  • Природный газ
  • Тетрагидрид углерода
  • Карбид водорода
Идентификаторы
3DMet {{{value}}}
Beilstein Ссылка 1718732
ЧЭБИ
ЧЭМБЛ
ChemSpider
ECHA InfoCard 100.000,739
Номер ЕС 200-812-7
Gmelin Артикул 59
КЕГГ
МеШ {{{value}}}
PubChem {{{value}}}
Номер RTECS PA14

Номер ООН 1971
УЛЫБКИ {{{value}}}
Недвижимость
CH 4
Молярная масса 16.04 г · моль −1
Внешний вид Бесцветный газ
Запах Без запаха
Плотность
  • 0,657 г · л −1 (газ, 25 ° C, 1 атм)
  • 0,717 г · л −1 (газ, 0 ° C, 1 атм)
  • 422,62 г · л −1 (жидкость, −162 ° C) [2]
Температура плавления −182,5 ° С; -296,4 ° F; 90,7 тыс.
Температура кипения −161.50 ° С; -258,70 ° F; 111,65 К [3]
22,7 мг · л −1
Растворимость Растворим в этаноле, диэтиловом эфире, бензоле, толуоле, метаноле, ацетоне и не растворим в воде
лог P 1,09
к H 14 нмоль · Па −1 · кг −1
Конъюгированная кислота метан
Основание конъюгата Метил анион
−12.2 × 10 −6 см 3 · моль −1
Структура
т д
Тетраэдр
0 D
Термохимия
Стандартная энтальпия образования
Δ f H o 298
−74,87 кДж · моль −1
Стандартная энтальпия горения
Δ c H o 298
−891.От 1 до −890,3 кДж · моль −1
Стандартная молярная
энтропия S o 298
186,25 Дж · (К · моль) −1
Удельная теплоемкость, C 35,69 Дж · (К · моль) −1
Опасности
NFPA 704

4

2

0

Пределы взрываемости 4.4–17%
Если не указано иное, данные приведены для материалов в их стандартном состоянии (при 25 ° C [77 ° F], 100 кПа).
N проверить (что такое YN ?)
Ссылки на инфобокс

Метан представляет собой органическое соединение с химической формулой CH
4 . Это алкан с одним атомом углерода. Часто встречается как основная часть природного газа.Метан является парниковым газом в [5] [6] в 23 раза более эффективным, чем диоксид углерода. Он также менее стабилен и медленно окисляется кислородом до двуокиси углерода и воды.

Метан используется в газовых кранах в таких местах, как кухни, кабинеты химии, лаборатории и т. Д., Поскольку он очень легко горит из-за своей простой молекулярной структуры.

Молекулярная структура метана очень проста. Это один атом углерода, окруженный четырьмя атомами водорода.

Метан можно получить многими химическими способами, но обычно он содержится в природном газе и получается путем фракционной перегонки после того, как он стал жидкостью.

Викискладе есть медиафайлы, связанные с метаном .
.

Тенденции состояния окисления в группе 4

ТЕНДЕНЦИИ СОСТОЯНИЯ ОКИСЛЕНИЯ В ГРУППЕ 4

 

На этой странице исследуются степени окисления (степени окисления) элементов 4-й группы - углерод (C), кремний (Si), германий (Ge), олово (Sn) и свинец (Pb). Он рассматривает возрастающую тенденцию элементов образовывать соединения со степенью окисления +2, особенно в отношении олова и свинца.


Примечание: Если вас не устраивают процессы окисления и восстановления (включая использование степеней окисления), обязательно перейдите по этой ссылке, прежде чем идти дальше.

Используйте кнопку НАЗАД в браузере, чтобы быстро вернуться на эту страницу.



Некоторые примеры тенденций в степенях окисления

Общая тенденция

Типичная степень окисления, показанная элементами в группе 4, составляет +4, обнаруживается в таких соединениях, как CCl 4 , SiCl 4 и SnO 2 .


Предупреждение: Не попадайтесь в ловушку, цитируя CH 4 в качестве примера углерода с типичной степенью окисления +4.Поскольку углерод более электроотрицателен, чем водород, его степень окисления в данном случае составляет -4!


Однако по мере того, как вы спускаетесь по Группе, появляется все больше и больше примеров, где степень окисления +2, таких как SnCl 2 , PbO и Pb 2+ .

В случае олова состояние +4 по-прежнему более стабильно, чем состояние +2, но к тому времени, когда вы становитесь лидером, состояние +2 становится более стабильным и доминирует в химическом составе свинца.

 

Пример из химии углерода

Единственный распространенный пример степени окисления +2 в химии углерода встречается в монооксиде углерода, CO.Окись углерода является сильным восстановителем, потому что она легко окисляется до двуокиси углерода, где степень окисления более термодинамически стабильна +4.

Например, окись углерода восстанавливает многие оксиды горячего металла до металла - реакция, которая используется, например, при извлечении железа в доменной печи.

 

Примеры из химии олова

К тому времени, как вы перейдете в группу до олова, состояние +2 становится все более распространенным, и существует хороший диапазон соединений олова (II) и олова (IV).Однако олово (IV) по-прежнему является более стабильной степенью окисления олова.

Это означает, что превратить соединения олова (II) в соединения олова (IV) будет довольно просто. Лучше всего это проявляется в том, что ионы Sn 2+ в растворе являются хорошими восстановителями.

Например, раствор, содержащий ионы олова (II) (например, раствор хлорида олова (II)), восстанавливает раствор йода до иодид-ионов. При этом ионы олова (II) окисляются до ионов олова (IV).


Примечание: Для простоты я пишу это уравнение (и несколько следующих) так, как если бы продукт содержал простые ионы олова (IV).На самом деле простых ионов олова (IV) в растворе не существует. В этих примерах они обычно будут частью гораздо более крупного комплексного иона. Не беспокойтесь об этом на этом уровне.


Ионы олова (II) также восстанавливают ионы железа (III) до ионов железа (II). Например, раствор хлорида олова (II) восстанавливает раствор хлорида железа (III) до раствора хлорида железа (II). При этом ионы олова (II) окисляются до более стабильных ионов олова (IV).

 

Ионы олова (II) также, конечно, легко окисляются мощными окислителями, такими как подкисленный раствор манганата (VII) калия (раствор перманганата калия).Эту реакцию можно использовать как титрование для определения концентрации ионов олова (II) в растворе.


Примечание: Если вас не устраивают расчеты титрования (в том числе с использованием манганата калия (VII)), возможно, вас заинтересует моя книга расчетов по химии.


И как последний пример. . .

В органической химии олово и концентрированная соляная кислота традиционно используются для восстановления нитробензола до фениламина (анилина).В этой реакции олово сначала окисляется до ионов олова (II), а затем до предпочтительных ионов олова (IV).


Примечание: Эта реакция подробно описана в разделе органической химии сайта на странице, посвященной получению фениламина.

Используйте кнопку НАЗАД в браузере, чтобы вернуться на эту страницу, если вы решите перейти по этой ссылке.



Примеры из химии свинца

Со свинцом ситуация обратная.На этот раз степень окисления свинца (II) более стабильна, и существует сильная тенденция для соединений свинца (IV) реагировать с образованием соединений свинца (II).

Хлорид свинца (IV), например, разлагается при комнатной температуре с образованием хлорида свинца (II) и газообразного хлора:

. . . и оксид свинца (IV) разлагается при нагревании с образованием оксида свинца (II) и кислорода.

Оксид свинца (IV) также реагирует с концентрированной соляной кислотой, окисляя некоторые хлорид-ионы в кислоте до газообразного хлора.Опять же, отрыв снижается с +4 до более стабильного состояния +2.

 

Попытка объяснить тенденции в степенях окисления

Нет ничего удивительного в нормальной степени окисления группы +4.

Все элементы в группе имеют внешнюю электронную структуру ns 2 np x 1 np y 1 , где n изменяется от 2 (для углерода) до 6 (для свинца). В степени окисления +4 все эти внешние электроны непосредственно участвуют в связывании.

По мере того, как вы приближаетесь к нижней части группы, наблюдается возрастающая тенденция к тому, чтобы пара s 2 не использовалась при склеивании. Это часто известно как эффект инертной пары - и является доминирующим в химии свинца.

Однако простое название «эффект инертной пары» ничего не объясняет. Вам нужно посмотреть на два разных объяснения в зависимости от того, говорите ли вы об образовании ионных или ковалентных связей.


Примечание: Весьма вероятно, что то, что следует ниже, намного превышает то, что вам нужно для целей UK A level (или его эквивалента) - , и предназначено в основном для интереса. Чтобы быть уверенным, обратитесь к своей программе и, что более важно, к прошлым экзаменационным работам и схемам оценок. Если вы готовитесь к экзамену в Великобритании и еще не сдали его, перейдите по этой ссылке на страницу учебных программ, чтобы узнать, как их получить.


Эффект инертной пары при образовании ионных связей

Если элементы в группе 4 образуют ионы 2+, они теряют p-электроны, оставляя пару s 2 неиспользованной.Например, чтобы сформировать ион свинца (II), свинец потеряет два 6p-электрона, но 6s-электроны останутся неизменными - «инертная пара».

Обычно вы ожидаете, что энергия ионизации будет падать по мере того, как вы спускаетесь по группе, когда электроны удаляются от ядра. В группе 4 этого не происходит.

На этой первой диаграмме показано, как общая энергия ионизации, необходимая для образования ионов 2+, изменяется по мере продвижения вниз по группе. Все значения указаны в кДж / моль -1 .

Обратите внимание на небольшое увеличение между оловом и свинцом.

Это означает, что удалить p-электроны из свинца немного сложнее, чем из олова.

Однако, если вы посмотрите на картину потери всех четырех электронов, расхождение между оловом и свинцом будет гораздо более заметным. Относительно большое увеличение между оловом и свинцом должно быть связано с тем, что пару 6s 2 значительно труднее удалить из свинца, чем соответствующую пару 5s 2 из олова.

Опять же, все значения указаны в кДж / моль -1 , и две диаграммы имеют примерно одинаковый масштаб.

Причины всего этого лежат в теории относительности. С более тяжелыми элементами, такими как свинец, происходит так называемое релятивистское сжатие электронов, которое имеет тенденцию притягивать электроны к ядру ближе, чем вы могли бы ожидать. Поскольку они расположены ближе к ядру, их труднее удалить. Чем тяжелее элемент, тем сильнее этот эффект.

Это влияет на s-электроны гораздо больше, чем на p-электроны.

В случае свинца релятивистское сжатие делает удаление 6s-электронов энергетически более трудным, чем вы могли ожидать.Термины, выделяющие энергию при образовании ионов (например, энтальпия решетки или энтальпия гидратации), очевидно, недостаточны для компенсации этой дополнительной энергии. Это означает, что образование ионов 4+ в свинце не имеет энергетического смысла.


Примечание: Если вы хотите узнать больше о релятивистском сжатии, попробуйте поискать в Google электронов релятивистского сжатия - но ожидайте, что вам придется заняться тяжелым чтением!


Эффект инертной пары в образовании ковалентных связей

Вы должны подумать, почему углерод обычно образует четыре ковалентные связи, а не две.

Внешняя электронная структура углерода в обозначении электронов в ящиках выглядит так:

Есть только два неспаренных электрона. Однако, прежде чем углерод образует связи, он обычно продвигает один из s-электронов на пустую p-орбиталь.

Остается 4 неспаренных электрона, которые (после гибридизации) могут образовывать 4 ковалентные связи.

Стоит предоставить энергию для продвижения s-электрона, потому что тогда углерод может образовывать в два раза больше ковалентных связей.Каждая образующаяся ковалентная связь высвобождает энергию, и этого более чем достаточно для обеспечения энергией, необходимой для продвижения по службе.

Одно из возможных объяснений нежелания свинца делать то же самое заключается в падении энергии облигаций по мере того, как вы спускаетесь по Группе. Энергия связи имеет тенденцию падать по мере того, как атомы становятся больше, а связующая пара удаляется от двух ядер и лучше экранируется от них.

Например, энергии, высвобождаемой при образовании двух дополнительных связей Pb-X (где X представляет собой H или Cl или что-то еще), может больше не хватить для компенсации дополнительной энергии, необходимой для продвижения электрона 6s на пустую орбиталь 6p.

Конечно, это было бы еще хуже, если бы энергетический зазор между 6s и 6p-орбиталями был увеличен за счет релятивистского сжатия 6s-орбитали.

 
 

Куда бы вы сейчас хотели пойти?

В меню группы 4. . .

В меню «Неорганическая химия». . .

В главное меню. . .

 

© Джим Кларк 2004 (изменено в марте 2015 г.)

.

окисление метана - определение

Пример предложений с «окислением метана», память переводов

патенты-wipoA процесс каталитического окисления метана в присутствии соединений серы и связанный с ним катализатор, патенты-wipoCatalyst и процесс окисления метана до methanolpatents-wipoИзотермический реактор для частичного окисления метана-метанаЧастичное окисление метана до формальдегида на катализаторах MoO3, Fe2O3 и ферромолибденаGlosbe Usosweb ResearchСинтез и характеристики катализаторов на основе оксидов марганца, хрома и меди, активных в синтезе газообразного марганца, хрома и меди, активного в синтезе газа метана полного окисления метана был улучшен за счет введения неравновесного плазменного катализатора.Патенты-wipoКатализатор и метод электрохимического окисления метана. Патенты-wipoАнаэробное окисление метана и денитрификация. бескислородные морские отложения. Гига-френ В отличие от формальдегида, он не образуется при атмосферном окислении метана и изопрена (CARB, 1993). 9ПольскиеПатентыЗаполнение биофильтра для окисления метанаПатент-випоКатализатор используется в реакции бромирующего окисления метана.Giga-frenОкисление метана метанотрофами в почве, покрытой свалкой, обеспечивает источник восстановления метана. Patents-wipoКатализаторы для низкотемпературного окисления метана-wipoМетод каталитического окисления метана с образованием метананола через метаноловые эфиры-спатенты-wipoPlasma метан в метанолсциело-заголовок Синтез Fe-Mo катализаторов на кремниевой основе для селективного окисления метана до формальдегида Гига-френ Окисление метана до метанола катализируется ферментом метанмонооксигеназой.Кордис Во-первых, это микробы, которые ответственны за анаэробное окисление метана (АОМ) с образованием метанола. патенты-wipoМетод частичного окисления метана с использованием плотной керамической мембраны с селективной проницаемостью кислородаpatents-wipoПроцесс анаэробного окисления метана. Реакция биологического окисления метана позволяет регулировать температуру биофильтра даже в зимний период.

Показаны страницы 1. Найдено 813 приговоры соответствие фразы «окисление метана».Найдено за 14 мс. Найдено за 1 мс.Накопители переводов создаются человеком, но выравниваются с помощью компьютера, что может вызвать ошибки. Они поступают из многих источников и не проверяются. Имейте в виду.

.

Смотрите также