В каких продуктах находится гликоген


Что такое гликоген и в каких продуктах содержится

Спортивные достижения зависят от ряда факторов: построения циклов в тренировочном процессе, восстановления и отдыха, питания и так далее. Если рассматривать детально последний пункт, то отдельного внимания заслуживает гликоген. Каждый спортсмен должен знать о его влиянии на организм и продуктивность тренировки. Тема кажется сложной? Давайте разбираться вместе!

Источники энергии для организма человека – это белок, углевод и жиры. Когда речь заходит об углеводах, то это вызывает опасения, особенно среди худеющих и атлетов на сушке. Связано это с тем, что избыточное употребление макроэлемента приводит к набору лишнего веса. Но действительно ли все так плохо?

В статье мы рассмотрим:

  • что такое гликоген и его влияние на организм и тренировки;
  • места накопления и способы пополнения запасов;
  • влияние гликогена на набор мышечной массы и жиросжигание.

Что такое гликоген

Гликоген – это вид сложных углеводов, полисахарид, в составе содержится несколько молекул глюкозы. Грубо говоря, это нейтрализованный сахар в чистом виде, не попадающий в кровь до возникновения потребности. Процесс работает в обе стороны:

  • после приема пищи глюкоза попадает в кровь, а излишки запасаются в виде гликогена;
  • во время физической нагрузки уровень глюкозы падает, организм начинает расщеплять гликоген при помощи ферментов, возвращая уровень глюкозы в норму.

Полисахарид путают с гормоном глюкогеном, который вырабатывается в поджелудочной железе и вместе с инсулином поддерживает концентрацию глюкозы в крови.

Где хранятся запасы

Запасы мельчайших гранул гликогена сосредоточены в мышцах и в печени. Объем варьируется в пределах 300-400 граммов в зависимости от физической подготовки человека. 100-120 г накапливается в клетках печени, удовлетворяя потребность человека в получении энергии для повседневной деятельности, частично используется во время тренировочного процесса.

Остальной запас приходится на мышечную ткань, максимум – 1% от общей массы.

Биохимические свойства

Вещество открыто французским физиологом Бернаром 160 лет назад при изучении клеток печени, где нашлись «запасные» углеводы.

«Запасные» углеводы концентрируются в цитоплазме клеток, и во время недостатка глюкозы происходит высвобождение гликогена с дальнейшим попаданием в кровь. Трансформация в глюкозу для удовлетворения потребностей организма происходит только с полисахаридом, который находится в печени (гипатоцид). У взрослого запас равен 100-120 г – 5% от общей массы. Пик концентрации гипатоцида наступает спустя полтора часа после приема насыщенной углеводами пищи (мучные изделия, десерты, продукты с высоким содержанием крахмала).

Полисахарид в мышцах занимает не более 1-2% от массы ткани. Мышцы занимают большую площадь в человеческом теле, поэтому запасы гликогена выше, чем в печени. Небольшое количество углевода присутствуют в почках, мозговых глиальных клетках, белых кровяных тельцах (лейкоцитах). Концентрация гликогена у взрослого составляет 500 граммов.

Интересный факт: «запасной» сахарид найден у дрожжевых грибов, некоторых растений и в бактериях.

Функции гликогена

Два источника резервов энергии играют свою роль в жизнедеятельности организма.

Запасы в печени

Вещество, которое находится в печени, поставляет в организм необходимое количество глюкозы, отвечая за постоянство уровня сахара в крови. Повышенная активность между приемами пищи снижает содержание глюкозы в плазме, и гликоген из клеток печени расщепляется, попадая в кровоток и выравнивая уровень глюкозы.

Но основная функция печени – не преобразование глюкозы в энергетические запасы, а защита организма и фильтрация. На самом деле печень дает отрицательную реакцию на скачки сахара в крови, физические нагрузки и жирные насыщенные кислоты. Эти факторы приводят к разрушению клеток, но в дальнейшем происходит регенерация. Злоупотребление сладкой и жирной пищей в комплексе с систематическими интенсивными тренировками повышает риск нарушения обмена веществ печени и работы поджелудочной железы.

Организм способен подстраиваться под новые условия, предпринимая попытку снизить затраты энергии. Печень перерабатывает за раз не больше 100 г глюкозы, а систематическое поступление сахара сверх нормы вынуждает восстановленные клетки превращать его сразу в жирные кислоты, игнорируя этап гликогена – это так называемое «жировое перерождение печени», приводящее к гепатиту в случае с полным перерождением.

Частичное перерождение считается нормальным для тяжелоатлетов: значение печени в синтезировании гликогена меняется, замедляя обмен веществ, количество жировой ткани увеличивается.

Bodymaster.ru рекомендует Фитнес Тренеров:

В мышечной ткани

Запасы в мышечной ткани поддерживают работу опорно-двигательного аппарата. Не стоит забывать, что сердце тоже является мышцей с запасом гликогена. Это объясняет развитие сердечно-сосудистых заболеваний у людей с анорексией и после длительного голодания.

Напрашивается вопрос: «Почему употребление углеводов чревато лишними килограммами, когда излишки глюкозы откладываются в виде гликогена?». Ответ прост: у гликогена тоже есть границы резера. Если уровень физической активности низкий, то энергия не успевает израсходоваться, и глюкоза накапливается в виде подкожного жира.

Еще одна функция гликогена – катаболизм сложных углеводов и участие в обменных процессах.

Потребность организма в гликогене

Истощенные запасы гликогена подлежат восстановлению. Высокий уровень физической активности может привести к полному опустошению запасов в мышцах и печени, а это снижает качество жизни и работоспособность. Долгий срок поддержания безуглеводной диеты сводит показатели гликогена в двух источниках к нулю. Во время интенсивной силовой тренировки мышечные резервы истощаются.

Минимальная доза гликогена в сутки – 100 г, но показатели увеличиваются в случае:

  • напряженной умственной работы;
  • выход из «голодной» диеты;
  • высокоинтенсивной физической нагрузки;

В случае дисфункции печени и недостатков ферментов нужно аккуратно выбирать пищу, богатую гликогеном. Высокое содержание глюкозы в диете подразумевает снижение употребления полисахарида.

Запасы гликогена и тренировки

Гликоген – основной энергоноситель, напрямую влияет на тренировки атлетов:

  • интенсивные нагрузки способны истощить запасы на 80%;
  • после тренировки организм нуждается в восстановлении, как правило, предпочтение отдается быстрым углеводам;
  • под нагрузкой происходит наполнение мышц кровью, что увеличивает гликогеновое депо за счет роста размера клеток, которые могут его запасать;
  • поступление гликогена в кровь происходит до тех пока, пока пульс не превысит 80% от максимального ЧСС. Недостаточное количество кислорода вызывает окисление жирных кислот – принцип эффективной сушки в момент подготовки к соревнованиям;
  • полисахарид не влияет на силовые показатели, лишь на выносливость.

Взаимосвязь очевидна: многоповторные упражнения больше истощают запасы, что ведет к увеличению гликогена и количества итоговых повторений.

Влияние гликогена на вес тела

Как было сказано выше, общее количество запасов полисахарида составляет 400 г. Каждый грамм глюкозы связывает 4 грамма воды, значит, 400 г сложного углевода составляет 2 килограмма водного раствора гликогена. Во время тренировок организм тратит запасы энергии, теряя жидкость в 4 раза больше – это объясняется потоотделение.

Сюда же отнесится результативность экспресс-диет для похудения: безуглеводный рацион питания приводит к интенсивному расходу гликогена, а заодно жидкости. 1 л воды = 1 кг веса. Но вернувшись к рациону с привычным содержанием калорий и углеводов, запасы восстанавливаются вместе с потерянной на диете жидкостью. Это объясняет кратковременность эффекта быстрой потери веса.

Похудеть без негативных последствий для здоровья и возвращения потерянных килограммов поможет правильный подсчет суточной потребности в калориях и физические нагрузки, способствующие расходу гликогена.

Дефицит и излишек – как определить?

Избыток гликогена сопровождается сгущением крови, сбоем работы печени и кишечника, набором лишнего веса.

Дефицит полисахарида приводят к расстройствам психоэмоционального состояния – развивается депрессия, апатия. Снижается концентрация внимания, иммунитет, наблюдается потеря мышечной массы.

Недостаток энергии в организме снижает жизненный тонус, сказывается на качестве и красоте кожи и волос. Пропадает мотивация тренироваться и в принципе выходить из дома. Как только вы заметили подобные симптомы, необходимо позаботиться о восполнении гликогена в организме с помощью читмила или корректировки плана питания.

Какое количество гликогена находится в мышцах

Из 400 г гликогена 280-300 г запасается в мышцах и расходуется во время тренировок. Под воздействием физической нагрузки усталость возникает из-за истощения запасов. В связи с этим за полтора-два часа до начала тренинга рекомендуется употребить продукты с большим содержанием углеводов с целью пополнения резервов.

Гликогеновое депо человека изначально минимальное и обусловлено только двигательными потребностями. Запасы увеличиваются уже спустя 3-4 месяца систематических интенсивных тренировок с высоким объемом нагрузки благодаря насыщению мышц кровью и принципу суперкомпенсации. Это приводит к:

  • увеличению выносливости;
  • росту мышечной массы;
  • изменению веса в процессе тренировки.

Специфика гликогена заключается в невозможности влияния на силовые показатели, а для увеличения гликогенового депо необходимы многоповторные тренировки. Если рассматривать с точки зрения паурлифтинга, то представители этого вида спорта не обладают серьезными запасами полисахарида ввиду специфики тренировок.

Когда вы ощущаете бодрость на тренировках, хорошее настроение, а мышцы выглядят наполненными и объемными – это верные признаки достаточного запаса энергии из углеводов в мышечных тканях.

Зависимость жиросжигания от гликогена

Час силовой или кардио нагрузки требует 100-150 г гликогена. Как только запасы заканчиваются, начинается разрушение мышечного волокна, а затем жировой ткани, чтобы организм получил энергию.

Для избавления от лишних килограммов и жировых отложений в проблемных местах во время сушки оптимальным временем тренинга будет длительный интервал между последним приемом пищи – натощак с утра, когда запасы гликогена истощены. Для сохранения мышечной массы во время «голодной» тренировки рекомендуется употребить порцию BCAA.

Как гликоген влияет на наращивание мышечной массы

Положительный результат в увеличении количества мышечной массы тесно связан с достаточным объемом гликогена на физические нагрузки и на восстановление запасов после. Это обязательное условие и в случае пренебрежения можно забыть о достижении поставленной цели.

Тем не менее, не следует устраивать углеводную загрузку незадолго до похода в тренажерный зал. Интервалы между едой и силовыми тренировками следует постепенно увеличивать – это учит организм разумно распоряжаться запасами энергии. На этом принципе построена система интервального голодания, которая позволяет набирать качественную массу без лишнего жира.

Как пополнить гликоген

Запасы глюкозы из печени и мышц являются конечным продуктом расщепления сложных углеводов, которые распадаются до простых веществ. Глюкоза, поступающая в кровь, преобразуется в гликоген. На уровень образования полисахарида влияют несколько показателей.

Что влияет на уровень гликогена

Гликогеновое депо можно увеличить с помощью тренировок, но на количество гликогена влияет и регуляция инсулина и глюкагона, происходящая при употреблении конкретного вида пищи:

  • быстрые углеводы оперативно насыщают организм, а излишки превращаются в жировые отложения;
  • медленные углеводы преобразуются в энергию, пропуская цепочки гликогена.

Для определения степени распределения употребленной пищи рекомендуется руководствоваться рядом факторов:

  • Гликемический индекс продуктов – высокий показатель провоцирует скачок сахара, который организм пытается сразу запасти в виде жира. Низкие показатели плавно повышают глюкозу, полностью расщепляя ее. Лишь средний диапазон (30 – 60) приводит к преобразованию сахара в гликоген.
  • Гликемическая нагрузка – низкий показатель дает больше возможностей конвертации углеводов в гликоген.
  • Вид углеводов – важна легкость расщепления углеводного соединения до простых моносахаридов. Мальтодекстрин имеет высокий гликемический индекс, но шанс переработки в гликоген велик. Сложный углевод минует пищеварение и попадает сразу в печень, обеспечивая успешность превращения в гликоген.
  • Порция углеводов – когда питание сбалансировано по КБЖУ в контексте диеты и одного приема пищи, то риск набрать лишний вес сведен к минимуму.

Синтезирование

Для синтезирования энергетических запасов организм первоначально расходует углеводы в стратегических целях, а остатки сохраняет для экстренных случаев. Дефицит полисахарида приводит к расщеплению до уровня глюкозы.

Регулируется синтез гликогена гормонами и нервной системой. Запускает механизм расходования запасов из мышц гормон адреналин, из печени – глюкагон (в случае голода вырабатывается в поджелудочной железе). «Запасным» углеводом руководит инсулин. Весь процесс проходит в несколько этапов только во время приема пищи.

Синтез вещества регулируется гормонами и нервной системой. Этот процесс, в частности в мышцах, «запускает» адреналин. А расщепление животного крахмала в печени активизирует гормон глюкагон (вырабатывается поджелудочной железой во время голодания). За синтезирование «запасного» углевода отвечает гормон инсулин. Процесс состоит из нескольких этапов и происходит исключительно во время приема пищи.

Восполнение гликогена после тренировки

После тренировки глюкоза легче усваивается и проникает в клетки, увеличивается активность гликогенсинтазы, которая является основным ферментом продвижения и хранения гликогена. Вывод: съеденные через 15-30 минут после тренировки углеводы ускорят восстановление гликогена. Если отсрочить прием на два часа, то скорость синтеза упадет до 50%. Добавление к приему белка в том числе способствует ускорению процессов восстановления.

Этот феномен называют «белково-углеводным окном». Важно: ускорить синтез белка после тренинга можно при условии, что физическая нагрузка была проведена после продолжительного отсутствия белка в употребленной пище (5 часов вместе с тренировкой) или натощак. Другие случаи никак не повлияют на процесс.

Гликоген в продуктах питания

Ученые утверждают, что для полноценного накопления гликогена необходимо получать 60% калорий из углеводов.

Макроэлемент отличается неоднородной возможностью преобразования в гликоген и жирные полиненасыщенные кислоты. Итоговый результат зависит от количества выделенной глюкозы при расщеплении пищи. В таблице указано процентное соотношение, в каких продуктах выше шанс конвертации поступающей энергии в гликоген.

Гликогеноз и другие нарушения

В некоторых случаях распада гликогена не происходит, вещество накапливается в тканях и клетках всех органов. Феномен встречается при генетических нарушениях – дисфункция ферментов, расщепляющих вещества. Патология называется гликогенезом, относится к аутосомно-рецессивным расстройствам. Клиническая картина описывает 12 типов заболевания, но половина из них остается слабо изучеными.

В число гликогеновых заболеваний входит агликогенез – отсутствие фермента, который отвечает за синтез гликогена. Симптоматика: судороги, гипогликемия. Диагностируется с помощью биопсии печени.

Запасы гликогена из мышц и печени крайне важны для спортсменов, увеличение гликогенового депо – это необходимость и профилактика ожирения. Тренировка энергетических систем помогает в достижении спортивных результатов и поставленных целей, увеличивая запасы суточной энергии. Вы забудете об усталости и будете оставаться в тонусе долгое время. Подходите к тренировкам и питанию с умом!

Структура и функции гликогена

Гликоген, полисахарид, является основной формой хранения глюкозы в клетках человека и животных для будущего использования. Он присутствует в цитозоле в виде гранул во многих типах клеток. Это разветвленный полисахарид глюкозы, который остается в качестве хранилища энергии у людей, грибов, животных и бактерий. Он хранится в клетках печени, мышц и скелета.

Структура гликогена:

Гликоген может быть организован в сферической форме, в которой цепи глюкозы структурированы вокруг основного белка гликогена с молекулярной массой 38000, и это выглядит как ветви дерева, происходящие из центральной точки.

Разветвленный полимер глюкозы называется гликогеном. Остатки глюкозы линейно связаны α-1, 4 гликозидными связями, и около 8-10 остатков цепь глюкозы ответвляется через α-1,6 гликозидные связи. Спиральная структура полимера образована α-гликозидными связями.

Гранулы в цитоплазме образуются в результате гидратации гликогена 3-4 частями воды, диаметр которых составляет 10-40 нм. В основе гликогена гранула находится белок гликоген, в котором участвует в синтезе гликогена.Это аналог крахмала, который является важной формой хранения глюкозы в большинстве растений, также у крахмала мало ответвлений, и он будет менее компактным по сравнению с гликогеном.

Функции гликогена:

У людей и животных гликоген находится в основном в клетках печени и мышц. Он синтезируется из глюкозы при высоком уровне сахара в крови и служит готовым источником глюкозы для тканей по всему телу, когда уровень сахара в крови снижается.

Мышечные клетки:

Гликоген составляет лишь 1-2% мышц по весу. Хотя, учитывая большую мышечную массу в теле, общее количество гликогена в мышцах будет больше, чем в печени. Гликоген, присутствующий в мышцах, поступает только в саму мышечную клетку. Фермент глюкозо-6-фосфат не будет экспрессироваться мышечными клетками, которые потребуются для выпуска глюкозы в кровоток.

Мышцы получают энергию во время любого упражнения или стресса, испытываемого телом.Это происходит за счет расщепления в мышечных волокнах фосфата глюкозы-1, производимого из гликогена, и превращения его в фосфат глюкозо-6.

Клетки печени:

В клетках печени гликоген составляет до 6-10% от веса печени. Если принятая пища не переваривается, уровень глюкозы в крови увеличивается, и инсулин высвобождается из поджелудочной железы, способствуя поглощению глюкозы клетками печени. Ферменты, участвующие в синтезе гликогена, активируются инсулином.

Когда уровни инсулина и глюкозы высоки, цепи гликогена удлиняются за счет добавления молекул глюкозы, и этот процесс называется гликогенезом. Синтез гликогена прекращается по мере снижения уровня глюкозы и инсулина. Если уровень сахара в крови падает ниже определенного уровня, глюкагон, высвобождаемый поджелудочной железой, заставляет клетки печени расщеплять гликоген. Происходит процесс гликогенеза, и глюкоза попадает в кровоток.

Следовательно, гликоген будет служить основным щитом уровня глюкозы в крови, накапливая глюкозу во время высокого уровня сахара в крови и высвобождая ее, когда уровень сахара низкий.Простого расщепления гликогена для снабжения глюкозой будет недостаточно для удовлетворения энергетических потребностей организма, поэтому в дополнение к глюкагону, кортизол, адреналин и норэпинефрин также будут стимулировать расщепление гликогена.

Другие ткани:

Гликоген в меньших количествах можно найти в других тканях, таких как почки, лейкоциты и эритроциты, а также в мышцах и клетках печени. Чтобы обеспечить потребности эмбриона в энергии, гликоген будет использоваться для хранения глюкозы в матке.Гликоген после распада попадает в гликолитический или пентозофосфатный путь или попадает в кровоток.

Бактерии и грибы:

Микроорганизмы, такие как бактерии и грибы, обладают некоторыми механизмами для хранения энергии, необходимой для работы с ограниченными ресурсами окружающей среды; здесь гликоген представляет собой основной источник для хранения энергии. Ограничения питательных веществ, такие как низкий уровень фосфора, углерода, серы или азота, могут стимулировать образование гликогена в дрожжах.Бактерии синтезируют гликоген в ответ на легкодоступные углеродные источники энергии с ограничением других необходимых питательных веществ. Споруляция дрожжей и рост бактерий связаны с накоплением гликогена.

Метаболизм гликогена:

Гемостаз гликогена, который представляет собой строго регулируемый процесс, позволяет организму выделять или хранить глюкозу в зависимости от его энергетических потребностей. Этапы метаболизма гликогена - это гликогенез или синтез гликогена и гликогенолиз или распад гликогена.

Гликогенез или синтез гликогена:

Гликогенез требует энергии, которую обеспечивает трифосфат уридина (UTP). глюкокиназа или гексокиназа сначала фосфорилируют свободную глюкозу с образованием глюкозо-6-фосфата, который затем превращается в глюкозо-1-фосфат с помощью фосфоглюкомутазы. Фосфат глюкозы-1 UTP катализирует активацию глюкозы, при которой фосфат глюкозы-1 и UTP реагируют с образованием UDP-глюкозы.

Белок, гликоген, катализирует присоединение UDP-глюкозы в процессе синтеза гликогена.Гликогенин содержит остаток тирозина в каждой субъединице, который будет служить точкой присоединения для глюкозы. Затем дополнительные молекулы глюкозы будут добавлены к восстанавливающему концу предыдущей молекулы глюкозы, чтобы сформировать цепь из почти восьми молекул глюкозы. При добавлении глюкозы через α-1,4 гликозидные связи гликогенсинтаза расширяется.

Разветвление, катализируемое трансглюкозидазами 1-4 - 1-6 амилоидов, называется ферментом разветвления гликогена. Фрагмент из 6-7 молекул глюкозы переносится от фермента разветвления гликогена от конца цепи к C6 молекулы глюкозы, которая расположена дальше внутри молекулы глюкозы и образует α-1,6 гликозидные связи.

Гликогенолиз или распад гликогена:

Глюкоза будет отделяться от гликогена через гликогенфосфорилазу, которая устраняет одну молекулу глюкозы из невосстанавливающего конца, давая глюкозо-1 фосфат. Распад гликогена, в результате которого образуется глюкозо-1-фосфат, преобразуется в глюкозо-6-фосфаты, и для этого процесса требуется фермент фосфоглюкомутаза.

Фосфоглюкомутаза будет переносить фосфатную группу из фосфорилированного серинового остатка в активном центре на C глюкозо-1 фосфата, и она будет присоединена к серину внутри фосфоглюкомутазы, и затем глюкозо-6 фосфаты будут высвобождены.

Гликогенфосфорилаза не сможет отсекать глюкозу от точек ветвления, поэтому для расщепления разветвлений потребуется 1-6 глюкозидаза, фермент разветвления гликогена (GDE) или 4-α-глюканотрансфераза, которые будут иметь активность глюкозидазы и глюкозилтрансферазы. Почти четыре остатка от точки ветвления, гликогенфосфорилаза не сможет удалить остатки глюкозы.

GDE отрежет последние три остатка ветви и присоединит их к C them молекулы глюкозы на конце другой ветви, а затем удалит последний отложение глюкозы, связанное с α-1-6, из точки ветвления.

Гликоген и диета:

Пища принимается, и выполняемые действия могут повлиять на производство гликогена и на то, как будет функционировать организм. При низкоуглеводной диете основной источник синтеза глюкозы, то есть углеводов, будет внезапно ограничен.

Во время начала низкоуглеводной диеты запасы гликогена будут сильно истощены, что приведет к появлению симптомов умственной тупости и усталости. Затем, когда организм начинает приспосабливаться и обновлять запасы гликогена, оно возвращается к нормальной стадии.Любые усилия по снижению веса могут в некоторой степени вызвать этот эффект.

При переходе на низкоуглеводную диету в организме происходит резкое снижение веса, которое выйдет на плато и может даже увеличиться через некоторое время. Это в основном из-за гликогена, который будет состоять в основном из воды, которая в 3-4 раза превышает вес самой глюкозы.

Быстрое истощение запасов гликогена в начале диеты вызывает быструю потерю веса воды. Затем, когда запасы гликогена обновляются, вес воды возвращается, что останавливает потерю веса.Необходимо иметь в виду, что это вызвано временным увеличением веса воды, а не жира, и потеря жира может продолжаться, несмотря на этот краткосрочный эффект плато.

Во время упражнений в организме происходит истощение гликогена, и большая часть гликогена истощается из мышц. Таким образом, при выполнении упражнений люди могут использовать углеводную нагрузку, что означает потребление большого количества углеводов, чтобы увеличить способность хранения гликогена. Гликоген отличается от гормона глюкагона и также играет важную роль в метаболизме углеводов и контроле уровня глюкозы в крови.

Как используется гликоген:

В любой момент в крови будет почти 4 грамма глюкозы. Когда уровень снижается из-за отсутствия еды или во время упражнений, когда глюкоза сжигается, уровень инсулина падает. Во время этого фермент, называемый гликогенфосфорилазой, расщепляет гликоген отдельно, чтобы поставлять глюкозу в организм, когда это необходимо.

В течение следующих 8-12 часов глюкоза, полученная из гликогена печени, будет основным источником энергии для организма.Из всех органов тела мозг будет использовать более половины глюкозы в крови во время бездействия и почти 20% в течение среднего дня.

.

Что такое гликоген? (с иллюстрациями)

Гликоген - это молекула полисахарида, которая хранится в клетках животных вместе с водой и используется в качестве источника энергии. При расщеплении в организме она превращается в глюкозу, важный источник энергии для животных. У животных он играет роль, аналогичную крахмалу в растениях. Было проведено множество исследований этой молекулы и ее роли в организме с тех пор, как она была признана важной частью системы накопления энергии в организме.

Животные получают гликоген, употребляя в пищу такие углеводы, которые содержатся в картофеле.

Животные получают эту молекулу из углеводов, вырабатывая ее в печени, мышцах и пищеварительном тракте в процессе пищеварения. Гликоген накапливается в мышечной ткани и в печени, и его уровень достигает пика сразу после еды.У человека в любой момент времени в организме человека может храниться около 2000 килокалорий. Когда люди едят, уровни обновляются, а организм работает над тем, чтобы поддерживать это количество как можно более стабильным, чтобы обеспечить стабильный запас энергии.

Спортсмены, как правило, едят много углеводов перед выполнением упражнений на выносливость, чтобы избежать истощения запасов гликогена, что может привести к тому, что они «упадут в стену»."

Хранение этой молекулы менее эффективно, чем хранение жирных кислот, что может заставить некоторых задуматься, почему организм не хранит всю энергию в этой форме. У животных есть несколько причин, по которым они откладывают гликоген, несмотря на сомнительную эффективность. Во-первых, мозгу нужна глюкоза, поэтому ему необходимы запасы энергии, которые удовлетворят его потребности.Во-вторых, эта молекула используется для регулирования уровня глюкозы в крови между приемами пищи.

Гликоген может быстро превращаться в глюкозу при понижении уровня сахара в крови.

Спортсмены могут оказаться в ситуации, когда их резервы истощены.Это происходит при тренировках на выносливость, когда организм медленно расходует запасы в течение соревнований, таких как марафон. Когда эта точка достигается, это иногда называют «ударом о стену» из-за напряжения, которое она оказывает на тело. Размер и физическое состояние спортсмена влияют на то, когда он или она ударится о стену. Спортсмены пытаются избежать этого, загружая углеводы перед соревнованиями, и они также быстро едят после соревнований, чтобы восстановить свои резервы.

Гликоген хранится в печени.

У некоторых людей есть состояния, известные как болезни накопления гликогена. Такие условия обычно носят генетический характер и вызваны проблемами с генами, которые регулируют процесс его создания и хранения. У людей также могут быть проблемы с расщеплением молекулы на глюкозу. Люди с этими состояниями могут испытывать широкий спектр проблем со здоровьем в зависимости от типа заболевания и того, насколько рано оно выявляется.

Гликоген накапливается в печени, и его уровень достигает пика сразу после еды..

Гликоген - лучший друг ваших мышц - Блог

Если вы спортсмен на выносливость, вы уже знаете, что гликоген - ваш лучший друг. Если вы только выходите на арену, понимание того, что гликоген может сделать для вашей физической работоспособности, поможет вам пройти долгий путь. Давайте разберемся!

Что такое гликоген?

Гликоген - это способ организма накапливать индивидуальную глюкозу, объединяя их вместе, чтобы образовать более крупную молекулу, которая позже может быть расщеплена для получения энергии.

Откуда это?

Когда мы едим, углеводы в нашей пище расщепляются на отдельные молекулы глюкозы и попадают в кровоток. Если есть немедленная потребность в энергии, эта глюкоза будет использована, в противном случае организм может сохранить ее в виде гликогена для дальнейшего использования.

Где хранится?

Наш организм накапливает гликоген в печени до 400 калорий и в скелетных мышцах до 1600 калорий. Печень расщепляет гликоген, чтобы регулировать уровень сахара в крови.Например, если мы какое-то время не ели, и уровень сахара в крови падает, печень говорит: «У меня здесь есть немного энергии, я могу ее разложить и поделиться с кровью». Гликоген работает в мышцах немного иначе, обеспечивая энергию непосредственно для сокращения мышц во время упражнений.

Как привыкнуть?

Во время тренировки ваше тело будет использовать все источники энергии, включая жир и гликоген, но на разных уровнях. Во-первых, организм будет использовать гликоген в мышцах и печени в большей степени, потому что он легче расщепляется, чем жир в жировой ткани.Кроме того, во время кардиотренировок организму требуется «легкая» энергия.

После двух часов интенсивной активности организм, как правило, сжигает гликоген в мышцах и печени и теперь в основном использует свободные жирные кислоты и глюкозу в крови для получения энергии. В это время для выработки глюкозы организм начинает глюконеогенез, процесс преобразования субстратов, не относящихся к глюкозе (таких как жир и белок), в глюкозу, которая будет использоваться для получения энергии. Этот процесс не идеален, поскольку он не производит столько энергии, сколько аэробный гликолиз, и не является эффективным путем.Кроме того, диета с низким содержанием углеводов быстрее истощает запасы гликогена в печени и мышцах.

Когда спортсмены соревнуются с высоким процентным содержанием VO2 и могут стать в некоторой степени анаэробными, они больше не могут так эффективно использовать жир и будут в основном полагаться на гликоген и глюкозу в качестве источников энергии, поэтому потребление диеты с достаточным содержанием углеводов является полезным. VO2 max или максимальное потребление кислорода - это максимальное количество кислорода, которое человек может использовать во время интенсивных или максимальных упражнений.Это измерение используется для описания состояния сердечно-сосудистой системы и аэробной выносливости. Чем больше кислорода кто-то может использовать во время тренировки, тем больше энергии он сможет произвести.

Чтобы обеспечить адекватные запасы гликогена, спортсмены должны потреблять не менее 300-400 граммов углеводов в день во время тренировки и перед соревнованием. В день соревнований они должны съесть 150-300 граммов углеводов за 3-4 часа до соревнований, а также съесть 60-120 граммов углеводов за час до соревнований и около 50 граммов углеводов непосредственно перед соревнованиями.Во время упражнений спортсмены должны потреблять не менее 30-60 граммов углеводов в час, в идеале - в меньших количествах каждые 10-15 минут на протяжении соревнований, а также во время тренировок, чтобы избежать истощения и максимизировать производительность.

Как пополнить запасы гликогена после тренировки?

После интенсивной активности пополнение запасов гликогена имеет решающее значение для восстановления тканей, первоначального восстановления, а также помогает вам прийти в норму для следующей тренировки.Синтез гликогена - это несколько медленный процесс, поэтому для его максимального увеличения рекомендуется принимать углеводные добавки с белком сразу после тренировки. Хорошее практическое правило - потреблять 4 грамма углеводов на 1 грамм белка. Попробуйте шоколадное молоко или банан с арахисовым маслом - вот почему вы всегда видите эти закуски в конце гонок.

Источники

Альганнам А., Гонсалес Дж., Беттс Дж. Восстановление мышечного гликогена и функциональной способности: роль совместного приема углеводов и белков после тренировки.MDPI. http://www.mdpi.com/2072-6643/10/2/253/htm. Опубликовано 23 февраля 2018 г. Проверено 30 мая 2018 г.

Берг Дж. М., Тимочко Дж. Л., Страйер Л. Выбор топлива во время тренировки определяется интенсивностью и продолжительностью активности. Биохимия. https://www.ncbi.nlm.nih.gov/books/NBK22417/. Опубликовано в 2002 г. По состоянию на 30 мая 2018 г.

Berg JM. Метаболизм гликогена. Успехи педиатрии. https://www.ncbi.nlm.nih.gov/books/NBK21190/. Опубликовано 1 января 1970 г. Проверено 30 мая 2018 г.

Плющ JL.Синтез мышечного гликогена до и после тренировки. Спортивная медицина . 1991; 11 (1): 6-19. DOI: 10.2165 / 00007256-199111010-00002.

Плющ JL. Регуляция восстановления мышечного гликогена, синтеза и восстановления мышечного белка после упражнений. Журнал спортивной науки и медицины . 2004; 3 (3): 131-1385. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3905295/. По состоянию на 30 мая 2018 г.

Маккалок Д. Как наши тела превращают пищу в энергию. Как наши тела превращают пищу в энергию.https://wa.kaiserpermanente.org/healthAndWellness?item=/common/healthAndWellness/conditions/diabetes/foodProcess.html. Опубликовано 1 марта 2014 г. Проверено 30 мая 2018 г.

Если вы ищете витаминные и минеральные добавки высочайшего качества, персонализированные для вас, перейдите по адресу www.personanutrition.com и заполните их онлайн-анкету с индивидуальными рекомендациями по витаминам и минералам. Persona - единственный поставщик пищевых добавок, основанный на науке, на сегодняшний день в сети! Воспользуйтесь их знаниями и используйте их на пользу своему здоровью!
Эта информация не предназначена для замены рекомендаций вашего врача или другого медицинского работника или любой информации, содержащейся на этикетке или упаковке продукта или на них.Не используйте информацию из этой статьи для диагностики или лечения проблем со здоровьем или заболеваний, а также для назначения лекарств или другого лечения. Всегда разговаривайте со своим врачом или другим медицинским работником, прежде чем принимать какие-либо лекарства или пищевые, травяные или гомеопатические добавки или использовать какое-либо лечение для проблемы со здоровьем. Если у вас есть или вы подозреваете, что у вас есть проблема со здоровьем, немедленно обратитесь к своему врачу. Не игнорируйте профессиональные медицинские советы и не откладывайте обращение за профессиональным советом из-за того, что вы прочитали в этой статье.
.

Функции углеводов в организме: (EUFIC)

Последнее обновление: 14 января 2020 г.

В этой части нашего обзора углеводов мы объясняем различные типы и основные функции углеводов, включая сахара. Чтобы узнать, как потребление углеводов связано со здоровьем, обратитесь к статье «Полезны ли углеводы для вас?».

1. Введение

Наряду с жирами и белками, углеводы являются одним из трех макроэлементов в нашем рационе, основная функция которых - обеспечивать организм энергией.Они встречаются во многих различных формах, таких как сахар и пищевые волокна, а также во многих различных продуктах, таких как цельнозерновые, фрукты и овощи. В этой статье мы исследуем разнообразие углеводов, содержащихся в нашем рационе, и их функции.

2. Что такое углеводы?

По сути, углеводы состоят из строительных блоков сахаров, и их можно классифицировать в зависимости от того, сколько сахарных единиц объединено в их молекуле. Глюкоза, фруктоза и галактоза являются примерами однокомпонентных сахаров, также известных как моносахариды.Двухкомпонентные сахара называются дисахаридами, среди которых наиболее широко известны сахароза (столовый сахар) и лактоза (молочный сахар). Моносахариды и дисахариды обычно называют простыми углеводами. Длинноцепочечные молекулы, такие как крахмалы и пищевые волокна, известны как сложные углеводы. На самом деле, однако, есть более явные различия. В таблице 1 представлен обзор основных типов углеводов в нашем рационе.

Таблица 1. Примеры углеводов, основанные на различных классификациях.

КЛАСС

ПРИМЕРЫ

Моносахариды

Глюкоза, фруктоза, галактоза

Дисахариды

Сахароза, лактоза, мальтоза

Олигосахариды

Фруктоолигосахариды, мальтоолигосахариды

Полиолы

Изомальт, мальтит, сорбит, ксилит, эритрит

Полисахариды крахмала

Амилоза, амилопектин, мальтодекстрины

Некрахмальные полисахариды
(пищевые волокна)

Целлюлоза, пектины, гемицеллюлозы, камеди, инулин

Углеводы также известны под следующими названиями, которые обычно относятся к определенным группам углеводов 1 :

  • сахара
  • простых и сложных углеводов
  • устойчивый крахмал
  • пищевые волокна
  • пребиотики
  • собственных и добавленных сахаров

Различные названия образованы из-за того, что углеводы классифицируются в зависимости от их химической структуры, а также в зависимости от их роли или источника в нашем рационе.Даже ведущие органы здравоохранения не имеют согласованных общих определений для различных групп углеводов 2 .

3. Виды углеводов

3.1. Моносахариды, дисахариды и полиолы

Простые углеводы, содержащие одну или две единицы сахара, также известны как сахара. Примеры:

  • Глюкоза и фруктоза: моносахариды, которые содержатся во фруктах, овощах, меде, а также в пищевых продуктах, таких как глюкозно-фруктозные сиропы
  • Столовый сахар или сахароза представляет собой дисахарид глюкозы и фруктозы и в природе встречается в сахарной свекле, сахарном тростнике и фруктах
  • Лактоза, дисахарид, состоящий из глюкозы и галактозы, является основным углеводом молока и молочных продуктов
  • Мальтоза представляет собой дисахарид глюкозы, содержащийся в сиропах из солода и крахмала

Моносахаридные и дисахаридные сахара, как правило, добавляются в пищевые продукты производителями, поварами и потребителями и называются «добавленными сахарами».Они также могут присутствовать в виде «свободных сахаров», которые естественным образом содержатся в меде и фруктовых соках.

Полиолы, или так называемые сахарные спирты, тоже сладкие и могут использоваться в пищевых продуктах так же, как и сахар, но имеют более низкую калорийность по сравнению с обычным столовым сахаром (см. Ниже). Они действительно встречаются в природе, но большинство полиолов, которые мы используем, производятся путем преобразования сахаров. Сорбитол является наиболее часто используемым полиолом в пищевых продуктах и ​​напитках, а ксилит часто используется в жевательных резинках и мятных конфетах. Изомальт - это полиол, производимый из сахарозы, часто используемый в кондитерских изделиях.Полиолы могут оказывать слабительное действие при употреблении в пищу в слишком больших количествах.

Если вы хотите узнать больше о сахарах в целом, прочтите нашу статью «Сахара: ответы на общие вопросы», статью «Решение общих вопросов о подсластителях» или изучите возможности и трудности замены сахара в выпечке и полуфабрикатах ( «Сахар с точки зрения пищевых технологий»).

3.2. Олигосахариды

Всемирная организация здравоохранения (ВОЗ) определяет олигосахариды как углеводы с 3-9 сахарными единицами, хотя другие определения допускают немного более длинные цепи.Наиболее известны олигофруктаны (или, в собственном научном выражении: фруктоолигосахариды), которые содержат до 9 единиц фруктозы и естественным образом встречаются в овощах с низкой сладостью, таких как артишоки и лук. Рафиноза и стахиоза - два других примера олигосахаридов, которые содержатся в некоторых бобовых, зернах, овощах и меде. Большинство олигосахаридов не расщепляются на моносахариды пищеварительными ферментами человека и вместо этого используются микробиотой кишечника (дополнительную информацию см. В нашем материале о пищевых волокнах).

3.3. Полисахариды

Десять или более, а иногда даже несколько тысяч сахарных единиц необходимы для образования полисахаридов, которые обычно делятся на два типа:

  • Крахмал, который является основным запасом энергии в корнеплодах, таких как лук, морковь, картофель и цельнозерновые продукты. Он имеет цепи глюкозы разной длины, более или менее разветвленные, и встречается в гранулах, размер и форма которых различаются между растениями, которые их содержат. Соответствующий полисахарид у животных называется гликогеном.Некоторые крахмалы могут перевариваться только микробиотой кишечника, а не механизмами нашего собственного тела: они известны как устойчивые крахмалы.
  • Некрахмальные полисахариды, которые входят в группу пищевых волокон (хотя некоторые олигосахариды, такие как инулин, также считаются диетическими волокнами). Примерами являются целлюлоза, гемицеллюлозы, пектины и камеди. Основными источниками этих полисахаридов являются овощи и фрукты, а также цельнозерновые продукты. Отличительной чертой некрахмальных полисахаридов и фактически всех пищевых волокон является то, что люди не могут их переваривать; следовательно, их среднее содержание энергии ниже по сравнению с большинством других углеводов.Однако некоторые типы клетчатки могут метаболизироваться кишечными бактериями, в результате чего образуются полезные для нашего организма соединения, такие как короткоцепочечные жирные кислоты. Узнайте больше о пищевых волокнах и их важности для нашего здоровья в нашей статье о «цельнозерновых» и «диетических волокнах».

Далее мы будем иметь в виду «сахара», когда говорим о моно- и дисахаридах, и «волокна», когда говорим о некрахмальных полисахаридах.

4. Функции углеводов в нашем организме

Углеводы - важная часть нашего рациона.Что наиболее важно, они обеспечивают энергией самые очевидные функции нашего тела, такие как движение или мышление, но также и «фоновые» функции, которые большую часть времени мы даже не замечаем. 1 . Во время пищеварения углеводы, состоящие из более чем одного сахара, расщепляются на свои моносахариды пищеварительными ферментами, а затем непосредственно всасываются, вызывая гликемический ответ (см. Ниже). Организм напрямую использует глюкозу в качестве источника энергии в мышцах, мозговых и других клетках.Некоторые углеводы не могут быть расщеплены, и они либо ферментируются кишечными бактериями, либо проходят через кишечник без изменений. Интересно, что углеводы также играют важную роль в структуре и функциях наших клеток, тканей и органов.

4.1. Углеводы как источник энергии и их хранение

Углеводы, расщепленные в основном на глюкозу, являются предпочтительным источником энергии для нашего тела, поскольку клетки нашего мозга, мышц и всех других тканей напрямую используют моносахариды для удовлетворения своих энергетических потребностей.В зависимости от вида один грамм углеводов обеспечивает разное количество энергии:

  • Крахмал и сахар являются основными углеводами, обеспечивающими энергию, и обеспечивают 4 килокалории (17 килоджоулей) на грамм
  • Полиолы содержат 2,4 килокалории (10 килоджоулей) (эритритол вообще не усваивается, поэтому дает 0 калорий)
  • Пищевые волокна 2 килокалории (8 килоджоулей)

Моносахариды непосредственно абсорбируются тонким кишечником в кровоток, откуда они транспортируются к нуждающимся клеткам.Некоторые гормоны, в том числе инсулин и глюкагон, также являются частью пищеварительной системы. Они поддерживают уровень сахара в крови, удаляя или добавляя глюкозу в кровоток по мере необходимости.

Если не использовать напрямую, организм превращает глюкозу в гликоген, полисахарид, подобный крахмалу, который хранится в печени и мышцах в качестве легкодоступного источника энергии. При необходимости, например, между приемами пищи, ночью, во время подъемов физической активности или во время коротких периодов голодания, наш организм превращает гликоген обратно в глюкозу, чтобы поддерживать постоянный уровень сахара в крови.

Мозг и красные кровяные тельца особенно зависят от глюкозы как источника энергии и могут использовать другие формы энергии из жиров в экстремальных условиях, например, в очень длительные периоды голодания. Именно по этой причине уровень глюкозы в крови должен постоянно поддерживаться на оптимальном уровне. Примерно 130 г глюкозы необходимо в день только для покрытия энергетических потребностей мозга взрослого человека.

4.2. Гликемический ответ и гликемический индекс

Когда мы едим пищу, содержащую углеводы, уровень глюкозы в крови повышается, а затем понижается, и этот процесс известен как гликемический ответ.Он отражает скорость переваривания и всасывания глюкозы, а также влияние инсулина на нормализацию уровня глюкозы в крови. На скорость и продолжительность гликемического ответа влияет ряд факторов:

  • Сама еда:
    • Тип сахара (ов), образующих (ых) углевод; например фруктоза имеет более низкий гликемический ответ, чем глюкоза, а сахароза имеет более низкий гликемический ответ, чем мальтоза
    • Строение молекулы; например крахмал с большим количеством ветвей легче расщепляется ферментами и, следовательно, легче усваивается, чем другие
    • Используемые методы приготовления и обработки
    • Количество других питательных веществ в пище, таких как жир, белок и клетчатка
  • (метаболические) обстоятельства у каждого человека:
    • Степень жевания (механическое нарушение)
    • Скорость опорожнения желудка
    • Время прохождения через тонкий кишечник (частично зависит от пищи)
    • Сам метаболизм
    • Время приема пищи

Влияние различных пищевых продуктов (а также технологии обработки пищевых продуктов) на гликемический ответ классифицируется относительно стандарта, обычно белого хлеба или глюкозы, в течение двух часов после еды.Это измерение называется гликемическим индексом (GI). ГИ 70 означает, что еда или питье вызывают 70% ответа на глюкозу в крови, который можно было бы наблюдать с таким же количеством углеводов из чистой глюкозы или белого хлеба; однако большую часть времени углеводы едят как смесь вместе с белками и жирами, которые влияют на ГИ.

Продукты с высоким ГИ вызывают большую реакцию глюкозы в крови, чем продукты с низким ГИ. В то же время продукты с низким ГИ перевариваются и усваиваются медленнее, чем продукты с высоким ГИ.В научном сообществе ведется много дискуссий, но в настоящее время недостаточно доказательств, чтобы предположить, что диета, основанная на продуктах с низким ГИ, связана со сниженным риском развития метаболических заболеваний, таких как ожирение и диабет 2 типа.

ГЛИКЕМИЧЕСКИЙ ИНДЕКС НЕКОТОРЫХ ОБЫЧНЫХ ПРОДУКТОВ (с использованием глюкозы в качестве стандарта)

Продукты с очень низким ГИ (≤ 40)

Сырое яблоко
Чечевица
Соевые бобы
Фасоль
Коровье молоко
Морковь (вареная)
Ячмень

Продукты с низким ГИ (41-55)

Лапша и макароны
Яблочный сок
Сырые апельсины / апельсиновый сок
Финики
Сырой банан
Йогурт (фрукты)
Цельнозерновой хлеб
Клубничное варенье
Сладкая кукуруза
Шоколад

Продукты питания с промежуточным ГИ (56-70)

Коричневый рис
Овсяные хлопья
Безалкогольные напитки
Ананас
Мед
Хлеб на закваске

Продукты с высоким ГИ (> 70)

Белый и непросеянный хлеб
Вареный картофель
Кукурузные хлопья
Картофель фри
Картофельное пюре
Белый рис
Рисовые крекеры

4.3. Функция кишечника и пищевые волокна

Хотя наш тонкий кишечник не может переваривать пищевые волокна, клетчатка помогает обеспечить хорошее функционирование кишечника за счет увеличения физического объема кишечника и, таким образом, стимулирования кишечного транзита. Когда неперевариваемые углеводы попадают в толстый кишечник, некоторые типы клетчатки, такие как камеди, пектины и олигосахариды, расщепляются микрофлорой кишечника. Это увеличивает общую массу кишечника и благотворно влияет на состав микрофлоры кишечника.Это также приводит к образованию продуктов жизнедеятельности бактерий, таких как короткоцепочечные жирные кислоты, которые выделяются в толстой кишке и оказывают благотворное влияние на наше здоровье (дополнительную информацию см. В наших статьях о пищевых волокнах).

5. Резюме

Углеводы - это один из трех макроэлементов в нашем рационе, который необходим для правильного функционирования организма. Они бывают разных форм, от сахара вместо крахмала до пищевых волокон, и присутствуют во многих продуктах, которые мы едим. Если вы хотите узнать больше о том, как они влияют на наше здоровье, прочитайте нашу статью «Углеводы полезны или вредны для вас?».

Список литературы

  1. Каммингс Дж. Х. и Стивен А. М. (2007). Терминология и классификация углеводов. Европейский журнал клинического питания 61: S5-S18.
  2. Портал знаний JRC Европейской комиссии, укрепление здоровья и профилактика заболеваний. Доступ 17 октября 2019 г.
    .

    Смотрите также