Через какой промежуточный продукт легко разлагающийся при нагревании


Через какой промежуточный продукт легко разлагающийся при нагревании

Составила В.И. Ермолаева

ЛАБОРАТОРНАЯ РАБОТА

ВАЖНЕЙШИЕ КЛАССЫ ХИМИЧЕСКИХ СОЕДИНЕНИЙ

Цель работы – ознакомление с важнейшими классами неорганических соединений: оксидами, гидроксидами, солями, способами их получения и свойствами.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Неорганических соединений известно около 300 тысяч, их можно разделить на три важнейших класса – оксиды, гидроксиды и соли.

Оксиды – продукты соединения элементов с кислородом. Различают солеобразующие и несолеобразующие оксиды, а также пероксиды, которые по свойствам относятся к солям пероксида водорода h3O2. Пероксиды образуют щелочные (Li, Na, K, Rb, Cs ) и щелочноземельные (Ca, Sr, Ba) металлы, в них атомы кислорода связаны между собой ковалентной связью (например, K2O2: K– O – O –K) и легко разлагаются с отщеплением атомарного кислорода, поэтому пероксиды являются сильными окислителями. Несолеобразующих оксидов немного (например, CO, NO, N2O), они не образуют солей ни с кислотами, ни с основаниями. Солеобразующие оксиды подразделяют на основные, кислотные и амфотерные.

Основные оксиды образуют металлы с низшими степенями окисления +1, +2 , их гидратами являются основания. Хорошо растворимые в воде основания щелочных металлов называются щелочами. Основания щелочно-земельных металлов (Ca, Sr, Ba) также образуются при растворении в воде соответствующих оксидов, но их растворимость меньше, к щелочам приближается только гидроксид бария Ba(OH)2. Основные оксиды реагируют с кислотными оксидами и кислотами, образуя соли:

CaO + CO2 = CaCO3; CuO + 2 HCl = CuCl2 + h3O.

Кислотные оксиды образуют неметаллы (B, C, N, P, S, Cl и др.), а также металлы, расположенные в побочных подгруппах больших периодов, образующие соединения высших степеней окисления +5, +6, +7 (V, Cr, Mn и др.). Гидратами кислотных оксидов являются кислоты. Кислотные оксиды реагируют с основными оксидами и основаниями:

SO2 + Na2O = Na2SO3; N2O5 + 2 NaOH = 2 NaNO3 + h3O.

Амфотерные оксиды образуют металлы главных и побочных подгрупп средних степеней окисления +3, +4 (Al, Cr, Mn, Sn и др.), иногда +2 ( Sn, Pb) , их гидраты проявляют как основные, так и кислотные свойства. Амфотерные оксиды реагируют как с кислотами, так и с основаниями:

Cr2O3 + 6 HCl = 2 CrCl3 + 3 h3O; Cr2O3 + 2 NaOH = 2 NaCrO2 + h3O

Оксиды можно получить реакцией соединения элемента с кислородом:

2Mg + O2 = MgO, 4P + 5O2 = 2 P2O5

или реакцией разложения сложного вещества: CaCO3 = CaO + CO2,

2 Zn(NO3)2 = 2 ZnO + 4 NO2 + O2.

Гидроксиды – продукты соединения оксидов с водой, различают основные (основания), кислотные (кислоты) и амфотерные (амфолиты) гидроксиды.

Основания при диссоциации в растворе в качестве анионов образуют только гидроксид – ионы: NaOH → Na + + OH ‾ .

Кислотность основания определяется числом ионов OH ‾. Многокислотные основания диссоциируют ступенчато: Ca(OH)2 ↔ (CaOH)+ + OH ‾, (CaOH)+ ↔ Ca2+ + OH ‾.

Водные растворы хорошо растворимых оснований (щелочей) изменяют окраску индикаторов: в щелочных растворах фиолетовый лакмус синеет, бесцветный фенолфталеин становится малиновым, метиловый оранжевый – желтым.

Основания реагируют с кислотами, образуя соли и воду: NaOH + HCl = NaCl + h3O.

Если основание и кислота взяты в эквимолярных отношениях, то среда становится нейтральной, а такая реакция называется реакцией нейтрализации.

Многие нерастворимые в воде основания при нагревании разлагаются:

Cu(OH)2 = CuO + h3O.

Щелочи получают растворением оксидов в воде: Na2O + h3O = 2 NaOH.

Нерастворимые в воде основания обычно получают действием щелочей на растворимые соли металлов: CuSO4 + 2 NaOH = Cu(OH)2 ↓ + Na2SO4.

Кислоты согласно теории электролитической диссоциации в качестве катиона образуют только катионы водорода Н+ (точнее ионы гидроксония Н3О+): HCl = H+ + Cl ‾.

Различают кислоты бескислородные (HCl, HI, h3S, HCN и др.) и кислородсодержащие (HNO3, h3SO4, h3SO3, h4PO4 и др.).

Основность кислоты определяется числом катионов водорода, образующихся при диссоциации. Многоосновные кислоты диссоциируют ступенчато:

h3SO3 ↔ Н + + HSO3‾; HSO3‾ ↔ Н + + SO3‾.

В растворах кислот лакмус становится красным, метиловый оранжевый – розовым, фенолфталеин остается бесцветным.

Кислоты получают растворением кислотных оксидов в воде:

P2O5 + 3 h3O = 2 h4PO4

или по реакции обмена соли с кислотой:

Ca3(PO4)2 + 3 h3SO4 = 3 CaSO4 + 2 h4PO4.

Амфолиты представляют собой гидроксиды, проявляющие в реакциях как основные, так и кислотные свойства. К ним относятся Be (OH)2 , Al (OH)3, Zn(OH)2, Cr(OH)3 и др. Амфотерные гидроксиды реагируют с основаниями как кислоты, с кислотами – как основания: Сr(OH)3 + 3 HCl = CrCl3 + 3 h3O; Сr(OH)3 + 3 NaOH = Na3[Cr(OH)6].

Соли при диссоциации образуют катионы металлов (или ион аммония Nh5+ ) и анионы кислотных остатков: Na2SO4 ↔ 2 Na+ + SO4 2 ‾, Nh5NO3 ↔ Nh5+ + NO3‾.

Соли различают средние, кислые и основные. Существуют также двойные соли, образованные разными металлами и одним кислотным остатком (KAl(SO4)2) и смешанные, образованные одним металлом и разными кислотными остатками (CaClOCl).

Средние соли можно рассматривать как продукты полного замещения атомов водорода в кислоте атомами металла или гидроксогрупп основания кислотными остатками: NaCl, K2SO4, AlPO4. Средние соли диссоциируют на катионы металла и анионы кислотных остатков: AlPO4 ↔ Al 3+ + PO4 3 ‾.

Кислые соли (гидросоли) являются продуктами неполного замещения атомов водорода многоосновных кислот атомами металла: NaHSO4, Al (h3PO4)3, KHCO3.

Диссоциация кислой соли выражается уравнением: Al (h3PO4)3 ↔ Al 3+ + 3 (h3PO4)3 ‾. Анион (h3PO4)3 ‾ дальнейшей диссоциации подвергается в незначительной степени.

Основные соли (гидроксосоли) являются продуктами неполного замещения гидроксогрупп многокислотного основания на кислотные остатки: AlOHSO4, MgOHCl, (CuOH)2SO4.

Диссоциация основной соли выражается уравнением: AlOHSO4 ↔ (AlOH) 2 + + SO4 2‾.

Катион (AlOH) 2 + дальнейшей диссоциации подвергается в незначительной степени.

Средние соли могут быть получены многими способами:

соединением металла и неметалла: 2 Na + Cl2 = 2 NaCl;

соединением основного и кислотного оксидов: CaO + CO2 = CaCO3;

вытеснением активным металлом водорода или менее активного металла:

Zn + 2 HCl = h3 + ZnCl2, Zn + CuSO4 = ZnSO4 + Cu;

реакцией нейтрализации: NaOH + HCl = NaCl + h3O;

реакцией обмена: Ba(NO3)2 + Na2SO4 = BaSO4 + 2 NaNO3 и др.

Кислые соли могут быть получены в кислой среде:

NaOH + h3SO4 (избыток) = NaHSO4 + h3O;

Na3PO4 + 2 h4PO4 (избыток) = 3 Nah3PO4.

Основные соли могут быть получены в щелочной среде:

h3SO4 + 2 Cu(OH)2 (избыток) = (CuOH)2 SO4 + Na2SO4,

2 CuSO4 + 2 NaOH(недостаток) = (CuOH)2 SO4 + Na2SO4

Кислые соли при избытке щелочи и основные соли при избытке кислоты переходят в средние соли: NaHSO4 + NaOH (избыток) = Na2SO4 + h3O,

(CuOH)2 SO4 + h3SO4 (избыток) = 2 CuSO4 + 2 h3O.

Для многих металлов характерны комплексные соединения, которые диссоциируют в растворе как сильные электролиты, образуя устойчивые комплексные ионы:

CuSO4 + 8Nh5OH (избыток) = [Cu (Nh4)4](OH)2 + [Cu (Nh4)4] SO4 + 8 h3O .

Степень диссоциации комплексных соединений незначительна:

[Cu (Nh4)4](OH)2 ↔ [Cu (Nh4)4] 2+ + 2 OH‾

[Cu (Nh4)4] SO4 ↔ [Cu (Nh4)4] 2+ + SO42‾

Комплексные соединения многих d – металлов окрашены, что позволяет их использовать в аналитической практике для обнаружения ионов металлов.

Вопросы для подготовки к лабораторной работе:

  1. Какие бинарные соединения называются оксидами? Какими способами

можно получить оксиды? Приведите примеры реакций.

  1. Какие вещества называются кислотами? Приведите примеры реакций получения кислот.

  2. Чем определяется основность кислот? Приведите примеры кислот различной основности.

  3. Какие вещества называются основаниями? Приведите примеры реакций получения оснований.

  4. Чем определяется кислотность оснований? Приведите примеры оснований различной кислотности.

  5. Какие химические соединения относятся к классу солей? Приведите примеры солей различных типов и способов их получения.

ПРАКТИЧЕСКАЯ ЧАСТЬ

РАЗДЕЛ 1. ПОЛУЧЕНИЕ И СВОЙСТВА ОКСИДОВ

Опыт 1. Получение оксида реакцией соединения

а) Получение оксида магния

Стружку сплава магния возьмите тигельными щипцами и внесите в пламя горелки. Опыт проводите над асбестовой сеткой или фарфоровой чашкой. Магний горит ярким белым пламенем, покрываясь белым налетом оксида магния. Напишите уравнения реакции образования оксида магния. Осторожно опустите стружку с образовавшимся оксидом в пробирку с дистилированной водой, добавьте 2-3 капли фенолфталеина, который является индикатором на наличие ионов гидроксида, определяющих щелочную среду, отметьте окраску раствора. Напишите уравнение реакции образования гидроксида магния .

б) Получение оксида меди

Возьмите тигельными щипцами кусочек медной фольги или тонкой медной пластины и прокалите его в пламени горелки до образования черного налета оксида меди Cu (II). Напишите уравнение реакции образования оксида меди. Налейте в пробирку 1-2 мл концентрированной соляной кислоты и опустите в нее прокаленный кусочек меди. Обратите внимание на исчезновение черного налета и появление окраски раствора, характерной для комплексного иона меди (II) [CuCl4]2- . Отметьте эту окраску. Напишите уравнение реакции взаимодействия оксида меди с соляной кислотой, сделайте вывод о характере оксида меди – осно́вный или кислотный.

Опыт 2. Получение оксида реакцией разложения

Возьмите тигельными щипцами кусочек мела и прокалите его в пламени горелки. Напишите уравнение реакции разложения карбоната кальция. Опустите прокаленный мел в пробирку с дистилированной водой, добавьте 2-3 капли фенолфталеина, отметьте окраску раствора, напишите уравнение реакции образования гидроксида кальция.

РАЗДЕЛ 2. ПОЛУЧЕНИЕ И СВОЙСТВА ГИДРОКСИДОВ МЕТАЛЛОВ

Опыт 3. Получение гидроксида никеля.

Опыт выполняется капельным методом.

Внесите по 1-2 капли соли никеля в 3 ячейки капельного планшета, добавьте в каждую ячейку по 2 капли раствора гидроксида натрия, обратите внимание на окраску образовавшегося гидроксида никеля, напишите уравнение реакции. Проверьте растворимость гидроксида никеля в кислоте и избытке щелочи, для чего в одну ячейку добавьте 2-3 капли щелочи, в другую – 2-3 капли соляной кислоты. Напишите уравнение протекающей реакции. Укажите характер гидроксида никеля.

Опыт 4. Получение гидроксида алюминия.

Опыт выполняется капельным методом.

Внесите по 1-2 капли соли алюминия в 3 ячейки капельного планшета, добавьте в каждую ячейку по 1 капле раствора гидроксида натрия, напишите уравнение реакции. Проверьте растворимость гидроксида алюминия в кислоте и избытке щелочи, для чего в одну ячейку добавьте 2-3 капли щелочи, в другую – 2-3 капли соляной кислоты. Напишите уравнение протекающих реакций. Укажите характер гидроксида алюминия.

Опыт 5. Получение гидроксида меди.

В пробирку налейте 1-2 мл раствора соли меди, добавьте 3-4 мл раствора гидроксида натрия, отметьте окраску образовавшегося осадка, напишите уравнение реакции. Закрепите пробирку в держателе и осторожно нагрейте ее в пламени горелки, обратите внимание на изменение цвета осадка, напишите уравнения реакции разложения гидроксида меди.

РАЗДЕЛ 3. ПОЛУЧЕНИЕ КИСЛОТ.

Опыт 6. Получение уксусной кислоты.

В пробирку поместите небольшое количество кристаллического ацетата натрия Ch4COONa и по каплям прилейте соляной кислоты, обратите внимание на появление запаха уксуса, напишите уравнение реакции в молекулярной и молекулярно-ионной форме.

Опыт 7. Получение угольной кислоты.

В пробирку поместите небольшой кусочек мела и прилейте раствор соляной кислоты. Опишите происходящие явления, напишите уравнение реакции в молекулярной и молекулярно-ионной форме.

РАЗДЕЛ 4. ПОЛУЧЕНИЕ СОЛЕЙ.

Опыт 8. Получение средней соли.

Опыт выполняется капельным методом.

Внесите 1-2 капли соли бария в ячейку капельного планшета, добавьте 1 каплю раствора сульфата натрия, напишите уравнение реакции в молекулярной и молекулярно-ионной форме.

Опыт 9. Получение основной соли.

Опыт выполняется капельным методом.

Внесите 1-2 капли соли кобальта в ячейку капельного планшета, добавьте 1 каплю раствора гидроксида натрия, обратите внимание на образование голубого осадка основной соли кобальта, добавьте избыток гидроксида натрия, обратите внимание на изменение цвета осадка. Напишите уравнение реакции в молекулярной и молекулярно-ионной форме.

Опыт 10. Получение кислой соли.

Налейте в пробирку 2-3 мл насыщенного раствора гидроксида кальция, добавьте по каплям раствора фосфорной кислоты до выпадения осадка средней соли фосфата кальция по реакции: 3 Ca(OH)2 + 2 h4PO4 = Ca3(PO4)2 ↓ + 6 h3O

В избытке фосфорной кислоты осадок растворяется с образованием кислой соли:

Ca3(PO4)2 + 4 h4PO4 = 3 Ca(h3 PO4)2

Напишите уравнения приведенных реакций в молекулярно-ионной форме.

Опыт 11. Получение комплексной соли.

В пробирку налейте 1-2 мл раствора сульфата меди, добавьте 1-2 мл водного раствора аммиака (гидроксида аммония Nh5OH), отметьте окраску образовавшегося осадка гидроксосульфата меди: 2 CuSO4 + 2 Nh5OH = (CuOH)2SO4 ↓+ (Nh5)2SO4

Добавьте избыток раствора аммиака до растворения осадка и образования комплексных солей: (CuOH)2SO4 + 8 Nh5OH = [Cu(Nh4)4](OH)2 + [Cu(Nh4)4]SO4 + 8 h3O.

Отметьте окраску образовавшегося раствора. Эта реакция является характерной и используется для обнаружения ионов меди в растворе.

КОНТРОЛЬНЫЕ ВОПРОСЫ К ЗАЩИТЕ ЛАБОРАТОРНОЙ РАБОТЫ

  1. Через какой промежуточный продукт, легко разлагающийся при нагревании, можно получить оксид металла из его соли? Покажите на примерах: FeCl3 → Fe2O3;

CuSO4 → CuO; Al(Ch4COO)3 → Al2O3.

  1. Возможно ли взаимодействие между оксидами: Li2O и SO3; Na2O и BeO;

Al2O3 и K2O; BaO и MgO; N2O5 и ZnO?

  1. Анализом установлено, что в образце оксида бария массовая доля примеси сульфата бария составляет 10%. Как был проведен анализ и какой объем раствора нужного реагента концентрации 2 моль/л был затрачен на обработку навески массой 5 г?

Ответ: 30 мл реагента.

  1. С какими из перечисленных веществ взаимодействует соляная кислота:

MgO; AgNO3; SO3; CuSO4; Ca(OH)2; Cu; Fe; KOH?

  1. Какие свойства гидроксидов NaOH, Al(OH)3, Ni(OH)2 могут быть использованы для их разделения из твердой смеси?

  2. Найдите массовую долю гидроксида натрия, превратившегося в карбонат за счет поглощения углекислого газа из воздуха, если масса гидроксида возросла с 200г до 232,5 г. Чему равен объем поглощенного при этом CO2 (условия нормальные).

Ответ: 50%, 28 л.

  1. Какими способами можно получить из данной соли другую с тем же катионом

или тем же анионом: NaCl → AgCl; Ba(NO3)2 → BaSO4;

Fe2(SO4)3 → FeCl3; Na2CrO4 → BaCrO4 ?

  1. При помощи каких реакций можно осуществить следующие переходы:

    1. Fe → FeCl2 → FeCl3 → FeOHSO4 → Fe2O3 → Fe;

    2. Zn → ZnS → ZnO → (ZnOH)2SO4 → ZnCl2 → ZnO →Zn.

  2. Какой объем CO2 (условия нормальные) потребуется для растворения 1,0 г

свежеосажденного CaCO3? Какие процессы произойдут в растворе при:

а) кипячении, б) добавлении щелочи, в) добавлении соляной кислоты?

Ответ: 0,224 л.

  1. К какому классу относится каждое из следующих соединений: Cs2O; Na[Al(OH)4];

h5SiO4; NO2; [Fe(OH)2]2SO4; Ca(HCO3)2?

ЛИТЕРАТУРА

  1. Практикум по общей и неорганической химии./ Под ред. Н.Н.Павлова, В.И.Фролова. – 2-е изд. – М.: Дрофа, 2002. – 304 с.

  2. Н.Б. Любимова. Вопросы и задачи по общей и неорганической химии. – М.: Высш. шк., 1990. – 351 с.

  3. Г.Н. Фадеев, Н.Н. Двуличанская. Решение задач по курсу «Химия» для нехимических вузов. Ч.1. – М.: Дом педагогики, 2000. – 72 с.

  4. А.А. Гуров, Ф.З. Бадаев, Л.П. Овчаренко, В.Н. Шаповал. Химия. –М.: Изд. МГТУ, 2004. – 748 с.

Термическое разложение карбонатов и нитратов группы 2

ТЕПЛОВАЯ УСТОЙЧИВОСТЬ КАРБОНАТОВ И НИТРАТОВ ГРУППЫ 2

 

На этой странице рассматривается влияние тепла на карбонаты и нитраты элементов 2-й группы - бериллия, магния, кальция, стронция и бария. Он описывает и объясняет, как термическая стабильность соединений изменяется по мере продвижения по группе.

 

Факты

Влияние тепла на карбонаты группы 2

Все карбонаты в этой группе подвергаются термическому разложению с образованием оксида металла и газообразного диоксида углерода.Термин термическое разложение относится к расщеплению соединения при его нагревании.

Все эти карбонаты представляют собой белые твердые вещества, а образующиеся оксиды также представляют собой белые твердые вещества.

Если "X" представляет любой из элементов:

По мере того, как вы спускаетесь по группе, карбонаты необходимо нагреть сильнее, прежде чем они разложатся.

Воздействие тепла на нитраты группы 2

Все нитраты этой группы подвергаются термическому разложению с образованием оксида металла, диоксида азота и кислорода.

Нитраты представляют собой твердые вещества белого цвета, а образующиеся оксиды также являются твердыми веществами белого цвета. Вместе с кислородом выделяется коричневый диоксид азота. Нитраты магния и кальция обычно содержат кристаллизационную воду, и твердое вещество может растворяться в своей собственной кристаллизационной воде, образуя бесцветный раствор, прежде чем он начнет разлагаться.

Опять же, если "X" представляет любой из элементов:

По мере того, как вы спускаетесь по группе, нитраты также должны быть нагреты сильнее, прежде чем они разложатся.

Сводка

Как карбонаты, так и нитраты становятся более термически стабильными по мере снижения Группы. Те, что ниже, должны быть нагреты сильнее, чем те, что вверху, прежде чем они разложатся.

 

Пояснения

Эта страница предлагает два разных взгляда на проблему. Вам необходимо выяснить, чего из этого ваши экзаменаторы могут ожидать от вас, чтобы вы не увлекались более сложными делами, чем вам действительно нужно.Вам следует посмотреть свою программу и прошлые экзаменационные работы - вместе со схемами оценок


Примечание: Если вы готовитесь к экзамену в Великобритании (уровень A или его эквивалент) и у вас нет копий учебной программы и прошлых работ, перейдите по этой ссылке, чтобы узнать, как их получить.


Даны подробные объяснения карбонатов, потому что диаграммы легче рисовать, а их уравнения также проще.Точно такие же аргументы применимы и к нитратам.

 

Объяснение тенденции с точки зрения поляризующей способности положительного иона

Маленький ион 2+ имеет большой заряд, упакованный в небольшой объем пространства. Он имеет высокую плотность заряда и будет оказывать заметное искажающее воздействие на любые отрицательные ионы, которые случайно окажутся рядом с ним.

Более крупный ион 2+ имеет такой же заряд, распределенный по большему объему пространства. Его плотность заряда будет ниже, и это вызовет меньшее искажение ближайших отрицательных ионов.

Структура карбонат-иона

Если бы вы выяснили структуру карбонат-иона, используя «крестики-точки» или какой-либо аналогичный метод, вы, вероятно, придумали бы:

На нем показаны две одинарные углерод-кислородные связи и одна двойная, причем два атома кислорода несут отрицательный заряд. К сожалению, в реальных карбонат-ионах все связи идентичны, а заряды распределены по всему иону, хотя и сосредоточены на атомах кислорода.Мы говорим, что обвинения делокализованы .

Это более сложная версия связывания, с которой вы могли столкнуться в бензоле или ионах, таких как этаноат. Для целей этой темы вам не нужно понимать, как возникла эта связь.


Примечание: Если вам интересно, вы можете перейти по этим ссылкам к бензолу или органическим кислотам. Любая из этих ссылок может вовлечь вас в довольно трудоемкий обходной путь!


На следующей диаграмме показаны делокализованные электроны.Затенение предназначено для того, чтобы показать, что их больше шансов найти вокруг атомов кислорода, чем рядом с углеродом.

Поляризация карбонат-иона

А теперь представьте, что происходит, когда этот ион помещается рядом с положительным ионом. Положительный ион притягивает к себе делокализованные электроны карбонатного иона. Карбонат-ион становится поляризованным.

При нагревании диоксид углерода высвобождается, оставляя оксид металла.

Сколько вам нужно нагреть карбонат до того, как это произойдет, зависит от того, насколько поляризован ион. Если он сильно поляризован, вам нужно меньше тепла, чем если бы он только слегка поляризован.

Чем меньше положительный ион, тем выше плотность заряда и тем сильнее он влияет на карбонат-ион. По мере того как положительные ионы становятся больше по мере того, как вы спускаетесь по группе, они меньше влияют на карбонатные ионы рядом с ними. Чтобы компенсировать это, вам нужно нагреть соединение больше, чтобы углекислый газ вырвался наружу и покинул оксид металла.

Другими словами, по мере того, как вы спускаетесь по группе, карбонаты становятся более термически стабильными.

А как насчет нитратов?

Аргумент здесь точно такой же. Маленькие положительные ионы в верхней части группы поляризуют нитрат-ионы сильнее, чем более крупные положительные ионы внизу. Нарисовать диаграммы, чтобы показать, как это происходит, намного сложнее, потому что в процессе взаимодействия участвуют более одного нитрат-иона. От вас не ожидается, что вы попытаетесь нарисовать это на экзамене.

 

Объяснение тенденции с точки зрения энергетики процесса

Анализ изменений энтальпии

Если вы подсчитаете изменения энтальпии разложения различных карбонатов, вы обнаружите, что все изменения в значительной степени эндотермические. Это означает, что реакции, вероятно, придется постоянно подогревать, чтобы они происходили.


Примечание: Если вас не устраивают изменения энтальпии, вы можете изучить раздел энергетики Chemguide или мою книгу расчетов по химии.


Изменения энтальпии (в кДж / моль -1 ), которые я рассчитал из изменений энтальпии образования, приведены в таблице. Цифры для расчета содержания карбоната бериллия отсутствовали. Помните, что речь идет о реакции:

.

MgCO 3 +117
CaCO 3 +178
SrCO 3 +235
BaCO 3

Вы можете видеть, что реакции становятся более эндотермическими по мере продвижения вниз по группе.Именно этого и следовало ожидать, поскольку карбонаты становятся более термически стабильными. Вы должны подавать все большее количество тепловой энергии, чтобы они разложились.

Объяснение изменений энтальпии

Здесь начинаются трудности! Если вы не знакомы с циклами закона Гесса (или с циклами Борна-Габера) и с энтальпиями решетки (энергиями решетки), вы не поймете следующего момента. Не тратьте время зря, глядя на него.

Использование энтальпийного цикла

Вы можете покопаться, чтобы найти основные причины все более эндотермических изменений по мере того, как вы спускаетесь по Группе, нарисовав цикл энтальпии, включающий энтальпии решетки карбонатов металлов и оксидов металлов.

Как ни странно, существует два способа определения энтальпии решетки. Чтобы сделать аргумент математически более простым, на оставшейся части этой страницы я буду использовать менее распространенную версию (что касается учебных программ уровня A в Великобритании):

Энтальпия решетки - это тепло, необходимое для разделения одного моля кристалла в его стандартном состоянии на отдельные газообразные ионы.Например, для оксида магния это тепло, необходимое для выполнения 1 моля этого изменения:


Примечание: Энтальпия решетки обычно определяется как тепло, выделяемое при образовании 1 моля кристалла из его газообразных ионов. В этом случае энтальпия решетки для оксида магния будет -3889 кДж · моль -1 . Термин, который мы здесь используем, точнее называть «энтальпией диссоциации решетки».


Интересующий нас цикл выглядит так:

 

Вы можете применить к этому закон Гесса и найти два маршрута, у которых будет одинаковое изменение энтальпии, потому что они начинаются и заканчиваются в одних и тех же местах.

По причинам, которые мы вскоре рассмотрим, энтальпии решетки как оксидов, так и карбонатов падают по мере того, как вы спускаетесь по группе. Но они падают с разной скоростью.

Энтальпия решетки оксида падает быстрее, чем карбонатная. Если вы внимательно подумаете о том, что происходит со значением общего изменения энтальпии реакции разложения, вы увидите, что оно постепенно становится более положительным по мере того, как вы спускаетесь по группе.

Объяснение относительного падения энтальпии решетки

Размер энтальпии решетки определяется несколькими факторами, одним из которых является расстояние между центрами положительных и отрицательных ионов в решетке.Силы притяжения максимальны, если расстояния между ионами малы. Если притяжения велики, то для разделения ионов потребуется много энергии - энтальпия решетки будет большой.

Энтальпии решетки как карбонатов, так и оксидов падают по мере того, как вы спускаетесь по группе, потому что положительные ионы становятся больше. Межионные расстояния увеличиваются, и притяжение становится слабее.

ионный радиус (нм)
Mg 2+ 0.065
Ca 2+ 0,099
O 2- 0,140
CO 3 2- ?

Энтальпии решетки падают с разной скоростью из-за разных размеров двух отрицательных ионов - оксида и карбоната. Оксид-ион относительно мал для отрицательного иона (0,140 нм), тогда как карбонат-ион велик (рисунок отсутствует).

В оксидах, например, когда вы переходите от оксида магния к оксиду кальция, межионное расстояние увеличивается с 0.От 205 нм (0,140 + 0,065) до 0,239 нм (0,140 + 0,099) - увеличение примерно на 17%.

В карбонатах на межионном расстоянии преобладает карбонат-ион гораздо большего размера. Хотя межионное расстояние будет увеличиваться на ту же величину, что и при переходе от карбоната магния к карбонату кальция, в процентах от общего расстояния увеличение будет намного меньше.

Некоторые выдуманные цифры ясно показывают это.

Я не могу найти значение радиуса карбонат-иона и поэтому не могу использовать реальные цифры.Ради аргумента предположим, что радиус карбонатного иона равен 0,3 нм. Межионные расстояния в двух случаях, о которых мы говорим, увеличились бы с 0,365 нм до 0,399 нм - увеличение всего примерно на 9%.

Скорость, с которой две энергии решетки падают при спуске вниз по группе, зависит от процентного изменения при переходе от одного соединения к другому. Исходя из этого, энтальпия решетки оксидов должна падать быстрее, чем у карбонатов.

А как насчет нитратов?

Нитрат-ион больше, чем оксидный ион, поэтому его радиус имеет тенденцию доминировать на межионном расстоянии.Энтальпия решетки оксида снова будет падать быстрее, чем у нитрата. если бы вы построили такой цикл дальше по странице, применимы те же аргументы.

 
 

Куда бы вы сейчас хотели пойти?

В меню группы 2. . .

В меню «Неорганическая химия». . .

В главное меню. . .

 

© Джим Кларк, 2002 г. (изменено в феврале 2015 г.)

.

Как делается бетон (новое исследование) - Цементный бетон

Как производится бетон: - Бетон представляет собой жидкую смесь цемента, воды, песка и гравия . Бетон можно заливать в формы или формы, и он затвердеет, чтобы создать необходимые компоненты бетонной конструкции. Вам интересно узнать о микроструктуре бетона? Вот Новое исследование по микроструктуре бетона.

Химическая реакция и гидратация

схватывание и твердение бетона вызвано химической реакцией между портландцементом и водой, это может быть продемонстрировано путем добавления небольшого количества цемента в воду, содержащую индикатор, быстрое развитие синего цвета отражает выделение гидроксила. Ионы из растворяющегося цемента химическая реакция между цементом и водой называется гидратацией.

Связанные: - Высокопрочные свойства бетона, прочность, добавки и состав смеси

Рис.1. Состав бетона

Растворение цемента увеличивает уровни кальция и кремния в растворе, когда концентрации растворенных веществ достигают критических уровней, в результате реакции осаждения образуются новые твердые продукты. Это эскиз зерен цемента, взвешенных в воде.

Твердые продукты Hydration образуют покрытия вокруг частиц цемента и постепенно заполняют пространство между ними, когда покрытия впервые начинают схватываться, происходит устойчивое увеличение прочности по мере того, как покрытия растут вместе, величина прочности, достигаемая за счет смесь цемента и воды зависит от того, насколько эффективно заполнено пространство между зернами.

Бетон затвердеет в течение нескольких часов, , но гидратация продолжается в течение недель, даже лет после укладки. Вот изображение частиц цемента до воздействия воды. Сухой цемент представляет собой мелкий порошок, и частицы не прикрепляются друг к другу после того, как цемент смешан с водой и оставлен стоять.

Сейчас картина совсем другая, частицы сгруппированы вместе и прикреплены твердым материалом, обеспечивающим структурную целостность.Ученые из Национального института стандартов и технологий научились моделировать гидратацию цемента на компьютере с помощью компьютерного моделирования.

Гидратация ускоряется за несколько минут, а не дней до гидратации. Моделирование частиц цемента размещаются на дисплее компьютера, компьютер определяет области частиц, которые могут растворяться в воде.

Кусочки растворенного цемента случайным образом диффундируют в воде и реагируют с образованием твердых фаз.Согласно определенным правилам после завершения цикла , растворения, диффузии и осаждения , компьютер переходит к другому циклу, поскольку этот процесс повторяется снова и снова.


Микроструктура бетона

Микроструктура создает мосты между частицами, которые придают материалу прочность. Компьютерное моделирование оказалось ценным, поскольку позволяет исследователям проверять условия и проводить измерения, которые трудно достичь в реальной жизни.В конце моделирования гидратации структура затвердевшего цементного теста очень похожа на ту, что наблюдается под микроскопом.

Гидратация - это экзотермический процесс, при котором в результате химических реакций выделяется тепло, за процессом гидратации можно легко следить, отслеживая выделение тепла, которое сопровождает реакции,

это делается путем отхаркивания раствора из партии бетона и его взвешивания в бутылку, которая помещается в изотермический контейнер, термистор встраивается в свежий раствор , выходной сигнал термистора можно регистрировать с помощью На компьютере результаты этого эксперимента могут быть представлены в виде кривой зависимости температуры от времени .

Подробнее : Производство портландцемента - процесс и материалы

Площадь под основным пиком может быть связана с ранним развитием прочности, начальное растворение цемента Purdue - это кратковременное выделение тепла, показанное первым пиком на калориметрической кривой.

После того, как продукты гидратации начального растворения быстро осаждаются на поверхности каждой частицы цемента, слой действует как защитный барьер и временно задерживает дальнейшее растворение частицы, это замедляет реакцию на несколько часов и называется период покоя.

Существование периода покоя позволяет транспортировать бетон на строительную площадку, укладывать и обрабатывать формы, конец периода покоя представляет собой начало схватывания, после чего цемент снова начинает реагировать. быстро с водой, поскольку образуются новые продукты гидратации.

Ученые используют измерения других свойств для контроля схватывания и твердения бетона, исследователям часто необходимо знать, какая часть цемента гидратирована.


Степень гидратации

Степень гидратации можно оценить путем нагревания образца цементного теста и измерения потери веса в зависимости от температуры с использованием оборудования для термогравиметрического анализа , свободная вода в образце удаляется нагреванием до 105 градусов Цельсия при 105 градусах . Образец сухой, но сохраняет свою прочность.

Вода, участвующая в реакциях гидратации, химически соединяется с цементом. Ее можно удалить из образца путем нагревания до 1000 градусов при 1000 градусов всей исходной смеси.вода была удалена из образца. Степень гидратации рассчитывается по весу химически объединенной воды, типичное цементное тесто, отвержденное во влажных условиях, достигает степени гидратации около 80% за 28 дней с,

Электрические свойства образцов цемента или раствора можно отслеживать с течением времени, что приводит к профилям изменений электрического сопротивления. Электрические свойства этого образца цемента измеряются с помощью двух металлических дорог и оборудования, которое измеряет сопротивление и импеданс.

На этой диаграмме показано, как сопротивление электричества через цемент увеличивается по мере того, как цемент гидратируется в раннем возрасте, вода легко проводит ток через образец, но когда продукты гидратации заполняют открытые пространства внутри образца, электрический ток не может проходить так же легко, в этом случае Таким образом, электрические свойства могут быть связаны со степенью гидратации.

Сопротивление и импеданс цемента - это тема исследований, которые когда-нибудь могут изменить методы испытаний свежего бетона в полевых условиях.Текучие свойства бетона очень важны в этой области, потому что качественное строительство требует соответствующего уплотнения.

Стандартное испытание на осадку обеспечивает грубую оценку удобоукладываемости бетона, это испытание широко используется, потому что его легко проводить в полевых условиях, свойства жидкости также являются предметом исследования в лаборатории из-за потока изменений цемента по мере гидратации. Такие свойства, как вязкость и начальное сопротивление потоку, используются для характеристики жидких материалов.

Вода - это жидкость с низкой вязкостью и низким начальным сопротивлением текучести, но бетонный раствор и свежий цементный клей имеют гораздо более высокую вязкость, чем вода.

Вибрация часто используется для преодоления этого сопротивления в бетоне в лаборатории, жидкие свойства цементного теста могут быть измерены с помощью этого реометра Brookfield , исследователи используют более крупное оборудование, такое как реометр Tattersall, для измерения свойств раствора и бетона.


Реологическое оборудование т может использоваться для измерения начального сопротивления потоку, которое во время схватывания называется пределом текучести.Предел текучести начинает увеличиваться, и способность к течению теряется, исследователи заинтересованы в характеристиках текучести, чтобы понять, как процесс гидратации делает свежий бетон жестким и приводит к его застыванию.

Скорость гидратации можно контролировать несколькими способами, такими как температура, тип цемента и примеси . влияет на скорость, одной из наиболее важных переменных является температура окружающей среды, высокие температуры ускоряют гидратацию, так что схватывание также происходит быстрее. как последующее развитие силы.

Когда температура понижается, происходит обратное, хорошее практическое правило состоит в том, что на каждые 10 градусов Цельсия изменение температуры скорость гидратации изменяется в два раза, например, повышение температуры с 20 градусов Цельсия до 30. градусов Цельсия удваивает скорость гидратации , важно помнить, что когда погода становится более прохладной, бетон затвердевает медленно и его необходимо хранить в форме в течение более длительного периода времени.

Гидратацию бетона также можно контролировать, используя различные типы цемента для противодействия влиянию высоких или низких температур в полевых условиях, например, использование 3-х типов цемента противодействует холоду, поскольку они быстрее гидратируются, есть также специальные химические вещества. которые регулируют гидратацию, могут быть добавлены в бетон, чтобы ускорить процесс гидратации.

Установить замедлители гидратации этих материалов широко доступны.

Таким образом, гидратация - это химическая реакция между цементом и водой, которая связывает частицы цемента и заполнитель в бетоне в прочную структуру, и во время массирования одно из важных преимуществ бетона перед другими строительными материалами состоит в том, что он смешивается. и формируется на месте и может принимать очень большие и гибкие . Способность бетона быстро набирать прочность делает его ценным материалом для дорог, зданий, мостов и других важных сооружений .

Вам также понравится:

(Посещали 1425 раз, сегодня 1 посещали)

Продолжить чтение

.

19 Классные химические реакции, доказывающие, что наука увлекательна

Химия может быть одной из самых завораживающих, но и опасных наук. Смешивание определенных химикатов может вызвать довольно неожиданные реакции, которые могут быть интересны для демонстрации. Хотя некоторые реакции можно наблюдать ежедневно, например, смешивание сахара с кофе, некоторые требуют контролируемых условий для визуализации эффектов. Но есть некоторые химические реакции, наблюдать за которыми просто потрясающе, и их легко провести в химических лабораториях.

Однако для вашей безопасности самый простой выход - посмотреть видео с такими впечатляющими химическими реакциями, прежде чем вы подумаете о том, чтобы воспроизвести их, чтобы лучше понять уровень риска и необходимые меры безопасности.

Вот список из 19 самых потрясающих химических реакций, которые доказывают, что наука всегда крута.

1. Полиакрилат натрия и вода

Полиакрилат натрия - это суперабсорбентный полимер. Подводя итог реакции, ионы полимера притягивают воду путем диффузии.Полимер поглощает воду за секунды, что приводит к почти мгновенному превращению в гелеобразное вещество. Именно это химическое вещество используется в подгузниках для поглощения отработанной жидкости. Технически это не химическая реакция, потому что химическая структура не меняется и не происходит реакции с молекулами воды. Скорее, это демонстрация поглощения в макроуровне.

2. Диэтилцинк и воздух

Диэтилцинк - очень нестабильное соединение.При контакте с воздухом он горит с образованием оксида цинка, CO2 и воды. Реакция происходит, когда диэтилцинк вступает в контакт с молекулами кислорода. Химическое уравнение выглядит следующим образом:

Zn (C2H5) 2 + 5O2 → ZnO + 4CO2 + 5h3O

3. Цезий и вода

Источник: Giphy

Цезий - один из наиболее реактивных щелочных металлов. При контакте с водой он реагирует с образованием гидроксида цезия и газообразного водорода. Эта реакция происходит так быстро, что вокруг цезия образуется пузырек водорода, который поднимается на поверхность, после чего цезий подвергается воздействию воды, вызывая дальнейшую экзотермическую реакцию, таким образом воспламеняя газообразный водород.Этот цикл повторяется до тех пор, пока не будет исчерпан весь цезий.

4. Глюконат кальция

Глюконат кальция обычно используется для лечения дефицита кальция. Однако когда он нагревается, он вызывает огромное расширение молекулярной структуры. Это приводит к образованию пены, напоминающей серую змею, вызванной испарением воды и дегидратацией гидроксильных групп внутри соединения. Говоря менее научным языком, при нагревании глюконат кальция быстро разлагается. Реакция следующая:

2C 12 H 22 CaO 14 + O 2 → 22H 2 O + 21C + 2CaO + 3CO 2

5.Трииодид азота

Вы можете приготовить это соединение дома, но имейте в виду, что это очень опасно. Соединение образуется в результате осторожной реакции йода и аммиака. После высыхания исходных компонентов образуется NI3, который является очень реактивным соединением. Простое прикосновение пера вызовет взрыв этого очень опасного контактного взрывчатого вещества.

6. Дихромат аммония

Когда дихромат аммония воспламеняется, он разлагается экзотермически с образованием искр, золы, пара и азота.

7. Перекись водорода и йодид калия

Когда перекись водорода и иодид калия смешиваются в надлежащих пропорциях, перекись водорода разлагается очень быстро. В эту реакцию часто добавляют мыло, чтобы в результате образовалось пенистое вещество. Мыльная вода улавливает кислород, продукт реакции, и создает множество пузырьков.

8. Хлорат калия и конфеты

Мармеладные мишки - это, по сути, просто сахароза.Когда мармеладные мишки попадают в хлорат калия, он вступает в реакцию с молекулой глюкозы в сахарозе, что приводит к сильно экзотермической реакции горения.

9. Реакция Белоусова-Жаботинского (BZ)

Реакция BZ образуется при осторожном сочетании брома и кислоты. Реакция является ярким примером неравновесной термодинамики, которая приводит к красочным химическим колебаниям, которые вы видите на видео выше.

10.Окись азота и сероуглерод

Реакция, часто называемая «лающей собакой», представляет собой химическую реакцию в результате воспламенения сероуглерода и закиси азота. Реакция дает яркую синюю вспышку и очевидный звук глухой. Реагенты реакции быстро разлагаются в процессе горения.

11. Сплав NaK и вода

Сплав NaK - это металлический сплав, образованный смешением натрия и калия вне воздуха, обычно в керосине.Этот чрезвычайно реактивный материал может реагировать с воздухом, но еще более бурная реакция происходит при контакте с водой.

12. Термит и лед

Вы когда-нибудь думали, что смешивание огня и льда может привести к взрыву?

СВЯЗАННЫЕ: 11 ЛУЧШИХ ХИМИЧЕСКИХ КАНАЛОВ НА YOUTUBE

Вот что происходит, когда вы получаете небольшую помощь от Thermite, который представляет собой смесь алюминиевого порошка и оксида металла. Когда эта смесь воспламеняется, происходит экзотермическая окислительно-восстановительная реакция, т.е.е. химическая реакция, в которой энергия высвобождается в виде электронов, которые переходят между двумя веществами. Таким образом, когда термит помещается поверх льда и воспламеняется с помощью пламени, лед немедленно загорается, и выделяется большое количество тепла в виде взрыва. Однако нет какой-либо убедительной научной теории о том, почему термит вызывает взрыв. Но одно ясно из демонстрационного видео - не пробуйте это дома.

13.Осциллирующие часы Бриггса-Раушера

Реакция Бриггса-Раушера - одна из очень немногих колеблющихся химических реакций. Реакция дает визуально ошеломляющий эффект за счет изменения цвета раствора. Для инициирования реакции смешивают три бесцветных раствора. Полученный раствор будет циклически менять цвет с прозрачного на янтарный в течение 3-5 минут и в итоге станет темно-синим. Три раствора, необходимые для этого наблюдения, представляют собой разбавленную смесь серной кислоты (H 2 SO 4 ) и йодата калия (KIO 3 ), разбавленную смесь малоновой кислоты (HOOOCCH 2 COOH), моногидрат сульфата марганца. (МнСО 4 .H 2 O) и крахмал витекс и, наконец, разбавленный пероксид водорода (H 2 O 2 ).

14. Supercool Water

Возможно, вы не заморозите окружающую среду, как Эльза в фильме «Холодное сердце», но вы определенно можете заморозить воду прикосновением к этому классному научному эксперименту. Эксперимент с супер холодной водой заключается в охлаждении очищенной воды до -24 ° C (-11 ° F). Охлажденную бутылку можно медленно вынуть и постучать по дну или по бокам, чтобы запустить процесс кристаллизации.Поскольку очищенная вода не имеет примесей, молекулы воды не имеют ядра для образования твердых кристаллов. Внешняя энергия, обеспечиваемая в виде крана или удара, заставит молекулы переохлажденной воды образовывать твердые кристаллы путем зародышеобразования и запустит цепную реакцию по кристаллизации воды по всей бутылке.

15. Феррожидкость

Ферромагнитная жидкость состоит из наноразмерных ферромагнитных частиц, взвешенных в жидкости-носителе, такой как органический растворитель или вода.Изначально обнаруженные Исследовательским центром НАСА в 1960-х годах в рамках исследования по поиску методов контроля жидкостей в космосе, феррожидкости при воздействии сильных магнитных полей будут создавать впечатляющие формы и узоры. Эти жидкости могут быть приготовлены путем объединения определенных пропорций соли Fe (II) и соли Fe (III) в основном растворе с образованием валентного оксида (Fe 3 O 4 ).

16. Гигантский пузырь сухого льда

Сухой лед всегда является забавным веществом для разнообразных экспериментов.Если вам удастся найти немного сухого льда, попробуйте в этом эксперименте создать гигантский пузырь из простых материалов. Возьмите миску и наполовину наполните ее водой. Смочите жидкое мыло водой и перемешайте. Пальцами намочите края миски и добавьте в раствор сухой лед. Окуните полоску ткани в мыльную воду и протяните ее по всему краю миски. Подождите, пока пары сухого льда не задержатся внутри пузыря, который начнет постепенно расширяться.

17. Змея фараона

Змея фараона - это простая демонстрация фейерверка.Когда тиоцианат ртути воспламеняется, он распадается на три продукта, и каждый из них снова распадается на еще три вещества. Результатом этой реакции является растущий столб, напоминающий змею, с выделением пепла и дыма. Хотя все соединения ртути токсичны, лучший способ провести этот эксперимент - в вытяжном шкафу. Также существует серьезная опасность пожара. Однако самое простое решение - посмотреть видео, если у вас нет доступа к материалам.

18. Эффект Мейснера

Охлаждение сверхпроводника ниже температуры перехода сделает его диамагнитным.Это эффект, при котором объект будет отталкиваться от магнитного поля, а не тянуться к нему. Эффект Мейснера также привел к концепции транспортировки без трения, при которой объект может левитировать по рельсам, а не прикрепляться к колесам. Однако этот эффект также можно воспроизвести в лаборатории. Вам понадобится сверхпроводник и неодимовый магнит, а также жидкий азот. Охладите сверхпроводник жидким азотом и поместите сверху магнит, чтобы наблюдать левитацию.

19. Сверхтекучий гелий

Охлаждение гелия до достижения его лямбда-точки (-271 ° C) сделает его сверхтекучим гелием II. Эта сверхтекучая жидкость образует тонкую пленку внутри контейнера и будет подниматься против силы тяжести в поисках более теплого места. Тонкая пленка имеет толщину около 30 нм и имеет капиллярные силы, превышающие силу тяжести, которая удерживает жидкость в контейнере.

.

ACCA PM (F5) Прошлые доклады: B4ab. Расчет и интерпретация TPAR

Glam Co - это парикмахерская, которая предоставляет клиентам как «стрижки», так и «процедуры». Все стрижки и процедуры в салоне выполняются одним из трех старших стилистов. Также в салоне работают два салона-ассистента и два младших стилиста.

Каждого посетителя салона сначала видит ассистент салона, который моет им волосы; затем старшим стилистом, который подстригает или обрабатывает их волосы в зависимости от того, какую услугу хочет клиент; затем, наконец, молодой стилист, который сушит им волосы.Средняя продолжительность общения с каждым сотрудником составляет:

Салон открыт восемь часов каждый день шесть дней в неделю. Он закрывается только на две недели в году. Заработная плата персонала составляет 40 000 долларов в год для каждого старшего стилиста, 28 000 долларов в год для каждого младшего стилиста и 12 000 долларов в год для каждого из помощников. Стоимость чистящих средств, применяемых при мытье волос клиентов, составляет 1 доллар 50 центов на одного клиента. Стоимость всех дополнительных продуктов, применяемых во время «лечения», составляет 7,40 долларов США на одного клиента.Прочие расходы салона (без учета рабочей силы и сырья) составляют 106 400 долларов в год.

Glam Co взимает 60 долларов за каждый разрез и 110 долларов за каждую процедуру.

Время старших стилистов было правильно определено как узкое место.

Каков годовой объем деятельности по узким местам?

.

Смотрите также

  • контакты |
  • о чем сайт? |
  • содержание |
  • карта сайта |